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Abstract. A well designed event trace data format is the basis of all trace-based
analysis methods. In this paper, we introduce the Open Trace Format Version 2
(OTF2). It is a major re-design based on the experiences of its predecessor formats,
the Open Trace Format (Version 1) and the EPILOG trace format. It comes with
a new file encoding, a close integration in the trace recording system Score-P, and
a number of improvements for performance and scalability. Besides the actual for-
mat, it consists of a read/write support library with a powerful API plus support-
ive tools, which are distributed as Open Source software. Furthermore, OTF2 will
serve as a joint data source for the analysis tools Scalasca and Vampir in the near
future.

Keywords. Tools Tracing Scalability

Introduction

Applications which are supposed to effectively utilize the enormous computational re-
sources of today’s HPC systems must meet very high requirements. Developing such
applications demands knowledge of the complex systems and underlying hardware, of
parallel programming paradigms, and the behavior of the own source code. These tasks
become more and more complex and can hardly be performed without support of appro-
priate tools.

Two common approaches to analyze the performance of applications are profiling
and event tracing. Profiling is the gathering of summarized information about different
performance metrics during runtime. While offering a good starting point to understand
performance problems, it does not provide further insight into the application’s dynamic
behavior. In contrast event tracing tools record all events that are of interest for later ex-
amination, together with the time they occured and a number of event type specific prop-
erties during application runtime. Typical events are entering and leaving of functions or
sending and receiving of messages.
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Thus, trace-based analysis tools have access to the detailed dynamic application be-
havior and are therefore able to offer a much higher level of insight into occurring per-
formance problems than profiling tools. However, the amount of collected information
can be tremendous and usually results in several hundreds or thousands of megabytes of
data per process. Therefore tools need highly memory efficient event trace formats and
highly scalable access libraries to manage all the data. With the Open Trace Format 2, we
present an event trace format and associated libraries that addresses those high demands.

In Section 1, we give an overview over existing event trace formats and their general
design. After that, we discuss the necessity of a new event trace format and the goals
we are trying to achieve with its novel design (Section 2). In Section 3 we describe im-
plementation concepts and details. We present some first test results showing the perfor-
mance of the OTF2 library in comparison with other well-established event trace reader
and writer libraries in Section 4) Finally, we draw first conclusions in Section 5 and give
an outlook on future work in Section 6.

1. Related Work

Trace data formats always have been an important component for event trace based tools,
but they usually received very little attention. There are a number of trace file formats in
the HPC performance analysis realm, which are mostly part of specific tool infrastruc-
tures, but rarely distributed on their own.

Most formats are very similar in design, but differ in event type details, their APIs,
the encoding details, etc. Typically, all come with a reader and writer library and a de-
fined API. Thus, the formats are essentially the APIs and libraries, while the actual file
encoding format is hidden from the user. All formats are constructed from basic event
types, e.g., for entering or leaving subroutine calls, sending or receiving messages, I/O
operations, and many more. The content of the trace files are individual event records for
all events of further interest that happened during runtime. They contain a time stamp, a
process/thread identifier, and further type-specific properties. Usually, the events have to
be sorted in chronological order, either per process/thread in multiple files or globally in
a single file. In addition to event records, there are also definition records which provide
general information like timer resolution, process names, and mapping tables.

Examples for trace file formats are the SLOG2 [1] format, the Dewiz trace format
[2] and the TAU trace format [3], which are related to the tools of the same name. The
format of Paraver, which also can be used with the Dimemas tool, is a very generic event
trace format with basic and simple record types [4]. The Structured Trace Format (STF)
from Intel Corp. is proprietary and binary and serves as the format for the Intel Trace
collector tool [5].

The Open Trace Format (OTF) and the EPILOG trace format are the predecessors
of the new Open Trace Format Version 2 (OTF2). OTF is the default format of the Vam-
pir tool set [6] and EPILOG is used by Scalasca [7]. OTF was developed by Technische
Universität Dresden in cooperation with the TAU tools group from University of Oregon
and the Lawrence Livermore National Labs. It is widely adopted, for example by the Mi-
crosoft HPC Server event tracing infrastructure and the former Sun Studio Performance
Tools.

Besides the traditional file formats, there are novel approaches for compressed stor-
age of event trace data. The ScalaTrace tools use a form of regular expressions to rep-
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resent repeated trace sequences in a compressed way [8]. It can achieve substantial data
compression but allows only very coarse statistical timing information. The Complete
Call Graph (CCG) approach uses a generalized call tree, which contains all events in-
cluding time stamps [9].

2. Motivation and Design Goals

The trace format and the related reader and writer library are the basis of every trace-
based analysis method. One of the major flaws of the predecessor formats of OTF2 (OTF
and EPILOG) was the missing compatibility between the event trace formats of Vampir
and Scalasca. Although there is already a close cooperation in development and training
activities on the part of the analysis tools (e.g. [10]), the measurement tools and formats
are separate up to now. On the one hand, Vampir is nowadays able to read EPILOG traces,
but not with the full set of features. On the other hand, Scalasca is not able to read OTF
traces, because it has much higher constraints for the semantics of the trace data. This
led to situations where a user of both tools had to record the trace data twice to be able
to use Vampir and Scalasca to analyze the same application. Given that a supercomputer
nowadays can have several thousands of processors and often users of such tools want
to analyze an application at higher scales, recording the trace twice means a tremendous
waste of computational resources. Thus, the most important requirement for the new
OTF2 library and format was, that it can fulfill the requirements of both tools. So users
can use one and the same measurement infrastructure for both.

The second requirement after interoperability was scalability. Today, where a super-
computer can operate several thousands of CPUs, developer tools need to be scalable. To
achieve this, every component of such tools needs to be scalable, too. For the trace reader
and writer components there are two very important dimensions of scalability. First, the
number of supported execution locations1 like processes and threads, and second the
scalability in time, which means the number of records per location that can be stored
without severely modifying the execution behavior of the measured application. Events
for each location are stored in a separate data stream, which needs to be stored in a file
afterwards. But, today’s file systems are not able to handle as many files handles as there
are processes or threads. Therefore, we plan to use SIONlib [11] for achieving parallel
scalability, especially with respect to file handles, and a couple of compression steps for
scalability in time. Compression steps in this context means that the OTF2 library is able
to already compress data during runtime and later on further compress the data that is
stored to a file system.

The third requirement was to integrate much more functionality right into the trace
library to provide better performance and usability than the former formats. For instance,
OTF does not provide an API to write event records into a memory buffer. Instead it can
handle a given buffer of events and has, therefore, an API to write it to disk in the right
OTF formatting. On the other hand, EPILOG does provide an API for writing events
into a memory buffer, but the buffer itself has to be allocated and written to disk by
the user. In contrast, OTF2 provides an external API for event record writing as well
as internal layers for memory management and file writing. Thereby the internal layers
are hidden from the user as much as possible, to make the API transparent to internal

1In the further context a location always means an execution location like a process or a thread.
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changes and easy to use. Hiding the buffer management from the programmer also gives
us the possibility to introduce an online compression, which results in less buffer flushes
than before. Reducing the number of buffer flushes is a major improvement, because they
usually lead to a huge bias for further measurement, typically rendering the resulting
trace useless for further analysis. Additionally, a new approach should be capable to read
a trace backwards, to avoid that a tool, which uses the new library, needs to take care of
this.

The last main requirement for OTF2 was to make the library easily extendable for
new features. Therefore, OTF2 is designed in an modular fashion with clearly separated
components that can be exchanged. For example, it is easily possible to add a number
of alternative strategies for file writing like SIONlib, hierarchical directory structures, or
network sockets. In addition, it is also possible to rapidly extend the format by generating
most parts of the external API. This gives us the opportunity to introduce new record
types into the format with a minimum of effort, just by their definition and a re-generation
of the interface afterwards.

3. Implementation

This section describes some details of the OTF2 implementation. We extended the con-
cepts of previous solutions with several features to enhance scalability and usability.
OTF2 consists of two parts – a binary file format specification and a library which can
read and write OTF2 traces.

3.1. File format

An OTF2 trace always consists of a set files, which is called an OTF2 archive. The
different file types and their purpose can be described as follows (numbering is according
to Figure 1):

1. Anchor file : The anchor file contains meta data, which is related to the archive
organization.

2. Global definition file : The global definition file stores all definitions that are equal
for all locations. Thereby, a location is a place where events of one execution
instance are recorded (e.g. a thread).

3. Local definition file : A local definition file holds all definitions that are only
related to a specific location. Additionally, these files store mapping information
to translate local identifiers to their global counterparts.

4. Local trace file : A local trace file stores all events that were recorded on the
related location.

The sizes of trace archives generated on todays supercomputers are too huge to be
copied, moved, or rewritten in a reasonable amount of time. Therefore, OTF2 maps all
local identifiers to global ones on-the-fly during reading. Furthermore, the data is stored
in the same endianess like the machine where the trace was recorded. For portability,
endianess conversion is performed automatically while reading if necessary.
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(1) Anchor File

<ArchiveName>.otf2

(2) Global
Definition File

<ArchiveName>.def

(3) Local
Definition Files

<ArchiveName>/<#>.def

(4) Event Files

<ArchiveName>/<#>.evt

(3) Local
Definition Files

<ArchiveName>/<#>.def

(4) Event Files

<ArchiveName>/<#>.evt

(3) Local
Definition Files

<ArchiveName>/<#>.def

(4) Event Files

<ArchiveName>/<#>.evt

(3) Local
Definition Files

<ArchiveName>/<#>.def

(4) Event Files

<ArchiveName>/<#>.evt

Figure 1. File system layout of an OTF2 archive.

3.2. Infrastructure of the OTF2 library

Fig. 2 shows the OTF2 library consisting of four layers, which are responsible for archive
management (layer 1), record representation (layer 2, see also Section 3.2.1), memory
representation (layer 3, see also Section 3.2.2), and file representation (layer 4, see also
Section 3.2.3). It also integrates a plug-in infrastructure to integrate reader components
for other formats than OTF2.

OTF2_File

OTF2_AnchorFile

OTF2_FileRaw
OTF2_FileNon

OTF2_InternalArc.

OTF2_GlobEvtReader

OTF2_EvtReader
OTF2_DevReader OTF2_GlobDevReader OTF2_EvtWriter OTF2_DevWriter OTF2_GlobDevWriter

OTF2_Buffer

OTF2_Archive / OTF2_Reader1)

2)

3)

4)

OTF2_FileSION

OTF2_Compression

Figure 2. Layout of the OTF2 library.

To use OTF2, first all required reader or writer objects need to be requested from
the central archive management. The trace data itself can then be stored and accessed
by using these components, representing the record layer. To perform memory opera-
tions, they use the memory layer which consists of two components: the internal archive
component, which is a memory representation of a trace’s meta data, and the memory
buffer component, which does the encoding and file system interaction. The latter uses
the lowest layer for requests to the file system as well as for compression, consisting of
several different substrates which are fully transparent to the memory layer.
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3.2.1. Record representation

record record record record record

current 
buffer 
position

chunk border chunk border

1 byte noop 
recordsrecord index

Figure 3.: The currently used chunk is in-
dexed if backward reading is requested.

Nearly every component of the re-
cord layer serializes records into a
sequence of atomic reads or writes
of single variables. These reads or
writes are performed with the buffer
component (see Section 3.2.2) of the
memory layer. In reading mode, ev-
ery record read triggers a callback
function to provide all record infor-
mation to the user. Mapping tables
from local definition files are trans-
parently applied, so that only global identifiers are visible to the reader.

An automatic indexing is needed for backward reading and seeking (see Figure 3),
because the variable size of attributes, caused by the internal runtime compression (Sec-
tion 3.2.2), circumvents a direct calculation of start addresses of a targeted record. The
records are organized in smaller units, called chunk, to avoid indexing the entire trace
which would be very costly. These chunks provide fixed starting points for reading and
are distributed over the whole trace. This reduces runtime and memory overhead if back-
ward reading is just used for reading a few records backwards, compared to a solution
which does indexing for the complete trace at once.

3.2.2. Memory representation

The most important part of the memory representation layer is the buffer component.
It implements functions for atomic reads and writes, a leading zero compression, the
chunk controlling, and it handles automatic flushing into a file if the available memory
is exceeded.

The OTF2 library uses two techniques to avoid storing unnecessary data and to
achieve a compact representation already at runtime. First, it stores the time stamp only
once for sequences of events with an identical time stamp. Second, OTF2 removes all
higher value zero bytes from integer attributes and stores the variable width into the
first byte followed by this compressed sequence. The buffer component is also capable
of using an external memory management. For example the measurement environment
Score-P [12] uses OTF2 with a memory pool dynamically distributed over all threads of
the same process. This enables a better resource distribution on imbalanced threads than
static memory assignment.

The buffer component is also used to read a trace. The reading mode is designed to
reduce memory usage and to enable future support for data prefetching. The minimiza-
tion of the memory consumption on reading is needed for use-cases where the trace con-
sumer runs on a much smaller computer than the trace producer. The OTF2 buffer com-
ponent achieves this by holding only three chunks in memory at any time: the current,
the previous and the next.

3.2.3. File representation

The file representation layer implements functions to abstract from operating system
dependent file handling routines and different encoding libraries. This layer is also shown
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in Figure 2 as layer four. It currently supports POSIX file interaction and no file system
interaction for later in-memory-analysis. In the future, we plan to integrate the SION
library [11] to achieve high performance parallel I/O. Each of these substrates can be
combined with a compression layer, which currently supports zlib compression.

4. Evaluation

The design of OTF2 clearly focuses on providing a more interoperable, scalable and
more functional tracing library. Nevertheless, the added features should not result in a
slower or more memory consuming format. Therefore, we compared OTF2 with two
other well-establish trace formats. The first is the EPILOG trace format [7] used by the
Scalasca analysis tool [13]. The second is the Open Trace Format (OTF) [6] used by the
Vampir/VampirTrace toolset [14]. Since the latter uses an internal memory buffer during
runtime we used this for the comparisons.

However, comparing different trace data formats is a non-trivial task. In most cases
the trace data libraries are closely connected with the according tracing tools. Therefore,
it is necessary to decouple the trace data libraries from the tracing tools to eliminate all
effects that originated in the tracing tools and not the data formats. In addition, different
trace data formats do not store exactly the same information. They focus on different
application behavior characteristics, different levels of detail, and provide a different
amount of functionality. Furthermore, the results presented in this paper are measured
with a first stable version of OTF2, which is not yet optimized for speed.

With this in mind, the comparisons presented in this paper are based on the follow-
ing idea: Read an existing application trace file, select the comparable event records, and
write only those records by using the different trace data libraries. With this method,
identical data is written to the different libraries without generating timing information
and random or even consecutive identifiers. So, the information sent to the libraries rep-
resents real application behavior but is exactly the same for all of them.

4.1. Runtime Memory Consumption

Memory consumption is one of the biggest issues when it comes to tracing, because if
the tracing library runs out of memory, it must flush the trace to a file system. Those
flushes usually need a long time, significantly perturbing the measurement. Thus, the
comparison focuses on the memory consumption during measurement of an application,
because less memory consumption leads to less flushes to the file system.

To compare the different libraries we took a set of benchmarks and applications:

• 104.milc ... 137.lu from SPEC MPI2007 benchmark2

• nas_pb_bt from NAS Parallel Benchmarks3 (block tridiagonal solver),
• smg2000 - The SMG2000 Benchmark4 (semicoarsening multigrid solver),
• sweep3d - ASCI SWEEP3D benchmark5 (3D discrete neutron transport), and

2http://www.spec.org/mpi/
3http://www.nas.nasa.gov/Resources/Software/npb.html
4https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
5http://www.ccs3.lanl.gov/pal/software/sweep3d/
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• cosmo6 - an atmospheric model code mainly developed by the DWD7.

For runtime memory comparison, we used the VampirTrace memory storage model
as a baseline. It reflects the memory consumption like it is achieved in practice, because
the OTF library does not support buffer management. For the sake of completeness, we
also added the results of a hypothetical test, where the Open Trace Format was used di-
rectly for the encoding of the memory buffer, not only for the storage on disk. Never-
theless, these results are only partially comparable, because it is not actually used during
runtime. We did this to show that a further diminishment of the online memory consump-
tion could not be achieved only by optimizing the library, but also required a redesign of
the whole format. In first tests we have seen that OTF2 consumes about 70 % less mem-
ory than VampirTrace, about 15 % less memory space than EPILOG and about 20-35 %
less space than OTF (see Fig. 4).
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Figure 4. Memory usage in different applications. For details about the applications see Section 4.1.

4.2. Runtime Overhead

Measuring an application always introduces overhead into the application runtime, which
can alter the application behavior and falsify the resulting trace. Therefore, even the
tracing library must work very efficiently, because writing data with such a library into
a memory buffer also directly influences the runtime overhead of the measurement. The
two existing solutions, the EPILOG library and the buffering part of VampirTrace, are
already very optimized in this direction. One of our goals for OTF2 was to introduce
the on-line compression (see Section 3.2.2) without decreasing the speed of the tracing
library.

We designed a benchmark for measuring the speed of all three solutions. It can read
in an OTF2 trace and write the records into a memory buffer of OTF2, EPILOG, and
VampirTrace. It is this way possible to simulate the measurement behavior of a wide
range of applications. It does this for at least one second and counts how many event
records could be written during this time. The benchmark is a parallel MPI program, to
make the test case more realistic and to be able to read in large traces.

6http://www.cosmo-model.org/content/model/core/model/basicDesign.htm
7Deutscher Wetterdienst – German Meteorological Service
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Figure 5. Events per Second.

The results of a first experiment with a trace of our Jacobi example can be seen in
Figure 5. The Jacobi example implements a MPI variant of the Jacobi linear equation
system solver. We did this particular test on a IBM BlueGene/P system, with 128, 256,
512, and 1024 processes, as it can be seen on the x-axis.

The results show that the EPILOG and OTF2 library are equally fast (≈3600k
events/s). The VampirTrace buffer is about 2.5 times faster since all event attributes are
aligned in memory, however, at the price of significantly increased memory requirements
due to the padding, as was shown in the previous section. Since scalability in the time
dimension is one of our main objectives, these tests indicate that OTF2 is a clear im-
provement over EPILOG in terms of memory usage without sacrificing performance.

5. Conclusion

In this paper we presented the Open Trace Format 2, a novel event trace data format with
its associated read/write support library. It is designed for performance and scalability as
well as better interoperability between different event trace analysis tools, in particular
Scalasca and Vampir. Thus, it enables the user to analyze an application with both anal-
ysis tools without the need to run costly measurements multiple times. In addition, it is
more memory efficient, offering the possibility to achieve measurements with less bias
due to memory buffer flushes.

6. Future Work

The work on OTF2 is an ongoing process. One of the next steps is the further integration
of the SION library [11] for other use cases then MPI programs, since SIONlib depends
on the parallel programming paradigm used. With this, the next goal are test runs with
large scale applications (>64k cores) to prove the scalability of the OTF2 concept. We
also see further potential for reducing the runtime overhead of the online compression.
In addition to that, there is an ongoing work to develop concepts and solutions to support
upcoming new parallel paradigms such as PGAS or GPGPU applications. Furthermore,
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OTF2 is open to support other performance analysis tools to help reduce the barriers
between them.
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