Parallel Sorting with Minimal Data

Christian Siebert!? and Felix Wolf 123

! German Research School for Simulation Sciences, 52062 Aachen, Germany
2 RWTH Aachen University, Computer Science Department, 52056 Aachen, Germany
3 Forschungszentrum Jiilich, Jiilich Supercomputing Centre, 52425 Jiilich, Germany
{c.siebert,f.wolf}@grs-sim.de

Abstract. For reasons of efficiency, parallel methods are normally used
to work with as many elements as possible. Contrary to this preferred
situation, some applications need the opposite. This paper presents three
parallel sorting algorithms suited for the extreme case where every pro-
cess contributes only a single element. Scalable solutions for this case are
needed for the communicator constructor MPI_Comm_split. Compared to
previous approaches requiring O(p) memory, we introduce two new par-
allel sorting algorithms working with a minimum of O(1) memory. One
method is simple to implement and achieves a running time of O(p). Our
scalable algorithm solves this sorting problem in O(log? p) time.

Keywords: MPI, Scalability, Sorting, Algorithms, Limited memory

1 Introduction

Sorting is often considered to be the most fundamental problem in computer
science. Since the 1960s, computer manufacturers estimate that more than 25
percent of the processor time is spent on sorting [6, p. 3]. Many applications use
sorting algorithms as a key subroutine either because they inherently need to
sort some information, or because sorting is a prerequisite for efficiently solving
other problems such as searching or matching. Formally, the sequential sorting
problem can be defined as follows:!

Input: A sequence of n items (z1,xa,...,z,), and a relational operator
< that specifies an order on these items.

Output: A permutation (reordering) (y1,¥ys2,--.,¥yn) of the input sequence
such that y; <yo < -+ < yp.

This problem has been studied extensively in the literature for more than sixty
years. As a result, many practical solutions exist, including sorting algorithms
such as Merge sort (1945), Quicksort (1960), Smoothsort (1981), and Introsort
(1997). Since there can be n! different input permutations, a correct sorting
algorithm requires {2(nlogn) comparisons. Some of the previously mentioned
solutions achieve a worst-case running time of O(nlogn), which makes them
therefore asymptotically optimal.

! To avoid any restrictions, this paper focuses on comparison-based sorting algorithms.

Published in “Proc. of EuroMPI 2011”, LNCS 6960, pp. 170177, Springer, 2011.
The original publication is available at www.springerlink.com

http://dx.doi.org/10.1007/978-3-642-24449-0_20

Single-core performance has been stagnant since 2002 and with the trend to
have exponentially growing parallelism in hardware due to Moore’s law, appli-
cations naturally demand a parallel sorting solution, involving p processes. We
assume that each process can be identified by a unique rank number between 0
and p—1. A necessary condition for an optimal parallel solution is that the n data
items are fully distributed over all processes. This means that process i holds
a distinct subset of n; data items, so that n = 25;—01 n;. Usually neglected, our
paper investigates the extreme case where every process holds exactly one data
item, thus n; is always 1 and n = p. This parallel sorting problem with minimal
data can be formulated as an extension to the sequential sorting problem:

Input: A sequence of items distributed over p processes (zg, 1, ..., Zp—1)
so that process i holds item x;, and a relational operator <.

Output: A distributed permutation (yo, y1,. .., yp—1) of the input sequence
such that process i holds item y; and yo <y1 <--- < yp_1.

The communicator creator MPI_Comm_split in the Message Passing Interface
requires an efficient solution for the parallel sorting problem with minimal data.
Existing implementations as in MPICH [5] and Open MPI [4] need O(p) memory
and O(plogp) time just to accomplish this sorting task. This paper offers three
novel parallel sorting algorithms as suitable alternatives:

1. An algorithm similar to Sack and Gropp’s approach [7] in terms of linear
resource complexity. Its advantage is simplicity, making it an ideal candidate
to implement MPI_Comm_split efficiently for up to 100,000 processes.

2. A modification of the first algorithm to reduce its O(p) memory complexity
down to O(1), eliminating this bottleneck at the expense of running time.

3. A scalable algorithm which also achieves this minimal memory complex-
ity, and additionally reduces the time complexity to O(log2 p). Experiments
prove this method to be the fastest known beyond 100,000 processes.

These algorithms represent self-contained parallel sorting solutions for our case.
In combination, they resolve all scalability problems for MPI_Comm_split.

2 Communicator Construction

MPI is an established standard for programming parallel applications, and is
especially suited for distributed-memory supercomputers at large scale. Every
communication in MPI is associated with a communicator. This is a special con-
text where a group of processes belonging to this communicator can exchange
messages separated from communication in other contexts. MPI provides two
predefined communicators: MPI_COMM_WORLD and MPI_COMM_SELF. Further com-
municators can be created from a group of MPI processes, which itself can be
extracted from existing communicators and modified by set operations such as
inclusion, union, and intersection. All participating processes must perform this
procedure and provide the same full (i.e., global) information, independently

of whether a process is finally included in the new context or not. This way
of creating a single communicator is not suited for parallel applications target-
ing large supercomputers because the resource consumption (i.e., memory and
computation) scales linearly with the number of processes in the original group.

The convenience function MPI_Comm_split (MPI-2.2 p. 205f) provides an al-
ternative way to create new communicators and circumvents the MPI group
concept. It is based on a color and key input and enables the simultaneous
creation of multiple communicators, precisely one new communicator per color.
The key argument is used to influence the order of the new ranks. However,
such an abundant functionality comes at a cost: any correct implementation of
MPI_Comm_split must sort these <color, key> pairs in a distributed fashion.
Every process provides both integers separately. Internally, they can however be
combined into a single double-wide value, such as in value=(color<<32)+key
for architectures with 32 bit integers, before executing the parallel sorting ker-
nel. The output value together with the original rank number is sufficient for
subsequent processing in MPI_Comm _Split, as segmented prefix sums (e.g., ex-
emplified in MPI-2.2 p. 182f) can efficiently compute an identifier offset for the
new communicator and the new rank number in O(logp) time and O(1) space.

Open question: Can MPI_Comm_split be implemented in a scalable way,
in particular with a memory complexity significantly smaller than O(p)?

3 Related Work

Parallelizing sorting algorithms has shown to be nontrivial. Although a lot of se-
quential approaches look promising, turning them into scalable parallel solutions
is often complex and typically only feasible on shared-memory architectures [2].
Many popular parallel sorting approaches for distributed memory are based
on Samplesort (1970) [3]. This algorithm selects (for example at random) a
subset of O(p?) input items called “samples”, which need to be sorted for further
processing. Unfortunately, methods using this approach do not work for n < p?,
and offer as such no solution for our special case with 1 item per process. Even
today these samples are still sorted sequentially [8] causing this to be the main
bottleneck at large scale. In fact, a scalable solution to the sorting problem with
minimal data might even help to eliminate this bottleneck in Samplesort.
Current implementations of MPI_Comm_split based on Open MPI as well
as MPICH do not sort the <color, key> arguments in parallel. Instead, they
simply collect all arguments on all processes using MPI_Allgather, then apply a
sequential sorting algorithm, and finally pick the resulting value that belongs to
the corresponding process. The ANSI C standard library function gsort is used
if available, which has an average running time of O(nlogn) but can exhibit
the O(n?) worst case for unfavorable inputs. Both implementations fall back to
a slow O(n?) Bubblesort algorithm if Quicksort is not provided by the system.
This naive approach results in a memory consumption that scales poorly with
O(p) and a running time of O(plogp) or even O(p?), which is to be avoided.

Sack and Gropp (2010) identified and analyzed this scalability problem for
MPI _Comm split in foresight of the exascale era [7]. Asking for a parallel sorting
solution, they proposed to utilize the exact splitting method of Cheng and col-
leagues (2007) [1] to improve upon the scalability of MPI_Comm_split. Instead
of a single sorting process, they propose to partially gather the input items on
multiple sorting roots. The exact splitting method is used to partition the gath-
ered data equally for these roots, which then sort the resulting smaller data sets
sequentially. The authors evaluated this intricate approach for up to 64 sorting
processes and projected an expected speedup of up to 16, representing commu-
nicators for 128 million MPI processes. This limited scaling in the order of logn
already reduces the complexities of MPI_Comm_split by a factor of logp down to
O(p) in terms of time and O(p/logp) in terms of memory. We propose further
solutions to this problem in Section 4 to improve upon both complexity terms.

4 Algorithm Designs

All algorithms discussed in this section can be used for the implementation of
MPI_Comm_split. They expect one input value per process, sort all values in
parallel, and return one output value per process, according to the definition of
the parallel sorting problem with minimal data in Section 1.

4.1 Sequential Algorithm

Existing implementations of MPI_Comm_split simply collect all input values on
all processes and do the actual sorting work in a redundant sequential fashion.

MPI_Comm_rank (comm, &rank);

tmparray = malloc(sizeof(type)*p);

MPI_Allgather (input, 1, type, tmparray, 1, type, comm);
gsort (tmparray, p, sizeof(type), cmpfunc);

output = tmparray [rank];

free(tmparray);

return output;

Listing 1.1. Sequential implementation

The MPI_Allgather operation has a time complexity of O(p), but the se-
quential sorting functionality encapsulated in gsort uses O(plogp) comparisons
on average. Therefore the latter becomes the dominating factor in Listing 1.1,
leading to an overall time complexity of O(plogp). A temporary array capable of
holding all p input values is needed, resulting in a memory complexity of O(p).

4.2 Counting Algorithm

An interesting observation helps us to remove the redundant executions of gsort:
It is sufficient to count how many values are smaller or equal than a process’ own
value as the destination for the input value arises directly from this information.

tmparray = malloc(sizeof(type)*p);

MPI_Allgather (input, 1, type, tmparray, 1, type, comm);

dest = —1;

for (i = 0; i < p; i++) { if (tmparray[i] <= input) dest++; }

free(tmparray);

MPI_Sendrecv(input, 1, type, dest, tag, output, 1, type,
MPIANY_SOURCE, tag, comm, status);

return output;

Listing 1.2. Counting implementation

This parallel sorting algorithm can be made stable by splitting the loop
into two parts and using different comparators. To ignore a process’ own value,
Listing 1.2 initializes dest to —1 instead of 0. After counting, each process knows
the corresponding process it has to send its value to. The for loop over p values
reduces the total time complexity by a factor of log p down to O(p). Since this not
only makes MPI_Comm_split much faster but also simplifies its implementation
by removing the dependencies to external functions such as gsort and own
Bubblesort implementations, we recommend immediate integration into MPI
libraries. The memory requirements do not change and therefore stay O(p).

4.3 Ring Algorithm with O(1) Memory

When memory requirements become a concern (e.g., with huge number of cores),
our counting algorithm can be adapted to avoid additional memory. The idea is
to mix the gathering and visiting of all values, so that this can be done in smaller
chunks—in the extreme case with only a single value. We created a virtual ring
of processes by using MPI_Cart_create to embed a one-dimensional and peri-
odic Cartesian topology into the underlying network topology. The convenience
function MPI_Cart_shift identifies the left and right neighbor in the ring.

dest = 0;
prev = input;
for (i = 1; i < p; i++) {
MPI_Sendrecv(prev, 1, type, left, tag, next, 1, type,
right , tag, ring.comm, status);
if (next <= input) dest+-+;
prev = next;
}
MPI_Sendrecv(input, 1, type, dest, tag, output, 1, type,
MPIANY SOURCE, tag, comm, status);
return output;

Listing 1.3. Ring implementation with O(1) memory

We utilize p — 1 iterations in Listing 1.3 to ignore a process’ own value.
The time complexity remains O(p), although the hidden constant? is potentially

2 The counting solution employs only one Allgather which can be implemented to
induce O(log p) network latencies as opposed to O(p) for individual communications.

much higher than in Listing 1.2. Fortunately, only a fixed number of variables
are needed, reducing the memory complexity down to the minimum of O(1).

4.4 Scalable Algorithm

While the previous algorithms are simple to understand, we sketch now a more
sophisticated approach to solve the parallel sorting problem with minimal data.
It is based on the divide-and-conquer concept underlying Quicksort:

1. globally select a pivot value (preferably close to the median of all elements)

2. divide: partition all distributed values into the three sets consisting of (i)
values that are less than pivot, (ii) values that are equal to pivot (important
for duplicates and stability), and (iii) values that are greater than pivot

3. conquer: recursively proceed with the set the process belongs to

Assume an O(logp) time collective communication operation that returns an
element close to the median of all provided values. Each process invokes this
functionality with its own input value to get a suitable pivot value in return.

(100) ifx; < pivot, ¥; = PrefixSum(v7) 000
07 ={(010) if 2 = pivot, di=vi-((100) w45
)

(001) ifa; > pivot. @ = GlobalSum(o; 110

Fig. 1. Calculating the new location in the divide step

The partitioning can be accomplished by utilizing parallel reduction opera-
tions. Each process compares its own value x; with the ascertained pivot value.
Depending on the outcome, it will initialize an array v; as specified in Figure 1.
This information is then processed in a prefix summation (cf. MPI_Exscan) and
a global summation (cf. MPI_Allreduce) to enable a calculation of the new lo-
cation d; (i.e., recipient) of each process’ value. A data shuffle via MPI_Sendrecv
concludes a single partitioning round with an overall time complexity of O(log p).

In the conquer step, a process compares its received value against the pivot
to decide where to proceed. This will divide the number of values in roughly two
halves, causing O(log p) divide-and-conquer rounds. To avoid the use of O(log p)
stack space, we implemented this tail-recursive conquer step iteratively. Alto-
gether, the memory complexity is O(1) and the running time becomes O(log? p).

Implementation Details Partitioning leads to subgroups of processes con-
tinuing independently in subsequent rounds. Since the algorithm uses collective
operations, we could create new communicators. However, existing communica-
tor creation is, with a complexity of £2(p), too expensive. Instead, we designed
special collective implementations that work on a sub-range of all processes in
MPI_COMM_WORLD. In contrast to the hardware-tuned Blue Gene/P collectives,
these range collectives slow down our scalable sorting method by a factor of
roughly 28, but in exchange achieve the required time complexity of O(log p).

We use an efficient median-of-3 reduction scheme within a complete ternary
tree topology to find an approximate median of all values. Each process provides
its input value as one of the leaves. Inner nodes receive three values, determine
their median, and forward the result to the next level. This procedure is repeat-
edly applied in O(logp) levels until the root gets the result. This single value
delivers a good approximation of the median because the 2'°837 — 1 smallest as
well as 2!°83P — 1 largest values out of p = 3* values will never be selected. Anal-
ysis reveals that a value close to the median is picked with very high probability.

5 Experimental Evaluation

All measurements were carried out on the full Jugene system located at the Jiilich
Supercomputing Centre in Germany. It consists of 73, 728 compute nodes, each
equipped with 2 GiB of memory and a 4-way SMP PowerPC processor running
at 850 MHz. Executables were linked against the BG/P MPI library 1.4.2.

A
1s+ XX
S 0) MPI_Comm_split X o
o 1) Sequential % ><>< o %
100 ms T o 2) Counting X Xo e?
2 x 3) Ring, O(1) mem X x* 0% @ &
2 10ms 1 e 4) Scalable, O(1) mem » XX e s o
bED ><>< 09....000008
S 1msT iix%("ge <><><><>
= o
~ Y ..XX OoO <><><><><>
100 ps + .0' ><><>< e
o
ST
10 ps 1K 8%
1 pus 1 i i 1 1 1 ‘

2 8 32 128 512 2k 8k 32k 128k 512k

Number of cores

Fig. 2. Performance comparison of the presented algorithms

Figure 2 depicts the runtime of all presented methods for a varying num-
ber of cores. Except for the MPI_Comm_split operation which used color=1 and
key=rank as input, all sorting algorithms started with a randomly chosen 64-bit
value per process. Compared to the extracted sorting kernel, the MPT_Comm_split
operation shows some overhead up to 2048 processes, after which both perfor-
mance curves converge. Our counting solution is up to 687% faster than all other
methods to the point of 98,304 cores. As expected, the ring algorithm is the
slowest candidate for larger communicators, but will never run out of memory.
Contrary to the other approaches where the running time increases proportion-
ally to the number of cores, the curve of our scalable algorithm flattens. This

makes it the fastest method beyond 100k cores, outperforming the current im-
plementation by a factor of 92.2 at full scale. Its performance can be modelled
by t(p) = 17.5 - (log, p)? us, giving a predicted running time of 12.7 ms for 128
million processes. As such it is a factor of 29.2 faster than Sack and Gropp’s best
proposed solution while requiring a million times less memory.

6 Conclusion

This paper approaches the problem of parallel sorting with minimal data. Be-
ing able to handle a single element per process in a scalable way is crucial for
an efficient implementation of the MPI communicator creator MPI_Comm_split.
Extending the work of Sack and Gropp, we introduced three novel algorithms
to solve this problem. Our first approach is similar to their proposed method
in terms of resource complexity, but is much simpler to implement and more
efficient in practice, making it an ideal candidate for MPI libraries. In prospect
to future systems, we reduced the O(p) memory complexity down to the mini-
mum of O(1) at the expense of performance in our second algorithm. Finally, we
sketched a scalable algorithm that solves the parallel sorting problem with min-
imal data. Measurements on the largest Blue Gene/P installation today showed
that this method eventually outperforms all other methods, making it 92.2 times
faster than current implementations and a hundred thousand times more mem-
ory efficient on 294, 912 cores. Since the algorithm’s time complexity of O(log2 D)
yields excellent scalability without any additional memory, it provides a suitable
solution to the tackled problem, at and beyond exascale—closing the open ques-
tion of a scalable MPI_Comm_split implementation with a positive answer.

References

1. Cheng, D.R., Shah, V., Gilert, J.R., Edelman, A.: A Novel Parallel Sorting Algo-
rithm for Contemporary Architectures. Tech. rep., University of California (2007)

2. Cole, R.: Parallel Merge Sort. STAM Journal on Computing 17, 770-785 (1988)

3. Frazer, W.D., McKellar, A.C.: Samplesort: A Sampling Approach to Minimal Stor-
age Tree Sorting. Journal of the ACM 17, 496-507 (1970)

4. Gabriel, Fagg, Bosilca, Angskun, Dongarra, Squyres, Sahay, Kambadur, Barrett,
Lumsdaine, Castain, Daniel, Graham, Woodall: Open MPI: Goals, Concept, and
Design of a Next Generation MPI Implementation. In: Proc. of the 11*" European
PVM/MPI Users’ Group Meeting. pp. 97-104 (2004)

5. Gropp, W., Lusk, E., Doss, N.; Skjellum, A.: A High-Performance, Portable Imple-
mentation of the Message Passing Interface Standard. Par. Comp. 22, 789ff (1996)

6. Knuth, D.E.: The Art of Computer Programming, volume 3 - Sorting and Searching
(2 ed.). Addison Wesley Longman Publishing, Redwood City, CA, USA (1998)

7. Sack, P., Gropp, W.: A Scalable MPI_Comm_split Algorithm for Exascale Comput-
ing. In: Proc. of the 17*" European MPI Users’ Group Meeting. pp. 1-10 (2010)

8. Shi, H., Schaeffer, J.: Parallel Sorting by Regular Sampling. Journal of Parallel and
Distributed Computing 14, 361-372 (1992)

