
Performance Analysis of Long-running Applications
Zoltán Szebenyi∗‡, Felix Wolf∗†‡, Brian J. N. Wylie∗

∗ Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
† German Research School for Simulation Sciences, 52062 Aachen, Germany

‡ RWTH Aachen University, 52056 Aachen, Germany
{z.szebenyi, f.wolf, b.wylie}@fz-juelich.de

Abstract—With the growing complexity of supercomputing
applications and systems, it is important to constantly develop
existing performance measurement and analysis tools to provide
new insights into application performance characteristics and
thereby help scientists and engineers utilize computing resources
more efficiently. We present the various new techniques de-
veloped, implemented and integrated into the Scalasca toolset
specifically to enhance performance analysis of long-running
applications. The first is a hybrid measurement system seamlessly
integrating sampled and event-based measurements capable
of low-overhead, highly detailed measurements and therefore
particularly convenient for initial performance analyses. Then
we apply iteration profiling to scientific codes, and present an
algorithm for reducing the memory and space requirements of
the collected data using iteration profile clustering. Finally, we
evaluate the complete integration of all these techniques in a
unified measurement system.

I. INTRODUCTION

Supercomputers play a key role in countless areas of science
and engineering, enabling the development of new insights and
technological advances that were previously inconceivable.
The strategic importance and ever-growing complexity of the
efficient usage of supercomputing resources makes parallel
performance analysis tools invaluable for the scientific and
engineering community. The Scalasca toolset [1] is a highly
scalable, open source profiling and tracing tool supporting
measurements of MPI, OpenMP and hybrid MPI/OpenMP
applications that has been demonstrated to effectively scale
to 294,912 processes [2]. In the course of this thesis project
several improvements to the Scalasca toolset were developed,
implemented and evaluated to extend its applicability to an
even wider range of use cases, and provide advanced features
that give more insight into the complex performance phenom-
ena encountered in long-running, large-scale applications.

Table I shows the set of representative scientific codes
studied, consisting of the SPEC MPI 2007 suite of large
applications complemented with the local DROPS and PEPC
applications. (PEPC run with 1,024 processes on the Jugene
Blue Gene/P, and the others with 256 processes on the Juropa
Nehalem cluster.) These applications are written in a variety
of languages with varying complexity, particularly in the use
of MPI, and run at a range of scales on different HPC systems
at Jülich Supercompuing Centre. Some perform thousands of
iterations (or time-steps), others only hundreds, and in a couple
of cases no clear iteration loop was identifiable (such as the
122.tachyon ray-tracing graphics application).

II. COMBINING SAMPLING AND EVENT-BASED
MEASUREMENTS

While the event-based instrumentation and measurement ap-
proach provided by Scalasca has been found to be effective for
most applications, in some cases it suffers from prohibitively
high overheads. When there are many tiny functions which are
frequently executed, as common in C++ codes, the time spent
recording those events can exceed the time spent in the actual
user code. Selective measurement filtering and instrumentation
can reduce or eliminate such cases, however, it requires scoring
a preliminary measurement run and needs to be done with care.
A measurement infrastructure that is more convenient to use
for performance monitoring and analysis of production runs
of scientific codes is desirable.

One solution to this problem is to switch to only recording
statistical data about the execution, as provided by sampling-
based measurements, as in [3], [4] and other tools. An in-
terval timer is configured to periodically interrupt execution
to acquire snapshots of the current state of execution. While
in an event-based measurement the current context is tracked
continuously, with the position in the call tree updated at each
subsequent enter and exit event, a disadvantage of sampling-
based techniques is that we lose track of the context between
samples. To still be able to build the dynamic call tree of the
application, we have to locate our position in the call tree

Max. call paths Call-tree
Execution per iteration equiv.

Application time [s] Iterations All MPI classes
121.pop2lref 461 440 543 228 10
122.tachyon 484 - - - -
125.RAxML 1003 21,268 316 63 18
126.lammps 574 300 458 78 8
128.GAPgeofem 575 2,501 55 17 11
129.tera tf 281 190 89 19 3
132.zeusmp2 248 200 183 91 2
137.lu 269 180 67 29 3
142.dmilc 203 - - - -
143.dleslie 254 15,054 38 12 4
145.lGemsFDTD 326 1,500 317 29 2
147.l2wrf2 683 720 1730 110 6
DROPS 497 50 18675 475 29
PEPC 13,643 1,300 66 35 4

TABLE I
APPLICATION CHARACTERISTICS: EXECUTION TIMES AND ITERATION,

CALL-PATH AND EQUIVALENCE CLASS COUNTS

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.388

2108

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.388

2104

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.388

2100

at every sample event. Call stack unwinding is employed to
determine the current call path. Since unwinding the stack is an
expensive operation, a variety of optimizations were necessary
including maintaining a thunk stack containing architecture-
specific jump instructions.

Another limitation of sampling-based measurements is that
they provide only statistically approximate data not just from
user functions, but also from MPI events like communication
function calls. As the communication characteristics of the
application are especially relevant when analyzing parallel effi-
ciency and scalability, recording all the communication events
is preferable. Moreover, access to communication function
arguments is straightforward with standard PMPI wrappers but
generally not possible from call-stack samples, which renders
the measurement system unable to collect many important
communication metrics like “Number of bytes transferred.”

To circumvent these problems, we developed a hybrid com-
bination of sampling and event-based measurements, where
sampling is used for user code and direct instrumentation is
applied to communication events. In this way, we get the best
of both techniques, combining full information about commu-
nication events with low overhead from sampling of the user
code. A similar hybrid approach is presented in [5], collecting
the two kinds of measurement data separately in profiles and
traces and merging them after measurement. In contrast, our
system provides a sophisticated, seamless integration of the
two measurement types, paying close attention to details such
as sample interrupts inside communication events and sample
intervals that contain one or more MPI calls. We evaluated
the technique using the SPEC MPI 2007 applications, and
demonstrated its usefulness by pinpointing actual scalability
bottlenecks in the DROPS C++ fluid dynamics code [6].

III. ITERATION PROFILING

Call-path profiling, which aggregates performance metrics
across the entire execution broken down by call path, is a
widely used method of linking a performance problem to the
context in which it occurs. For example, in the analysis of
MPI programs, call-path information for each process is often
essential to determine where in the program a communication
bottleneck occurs. However, these kinds of measurements only
give the user a summary overview of the entire execution,
without regard to changes in performance behavior over time.
As scientific applications tend to be run for extended periods of
time, simply neglecting these changes is no longer sufficient,
and understanding the patterns and trends in the performance
data along the time dimension becomes crucial.

Most scientific applications have an easily identifiable main
loop, e.g., iterating through discrete timesteps of a simulation.
To get a better understanding of the temporal changes of
the performance characteristics of these applications, a simple
source code instrumentation interface was introduced to mark
the beginning and end of the main loop, enabling Scalasca
to collect a separate profile for each iteration. There is ongo-
ing work looking at the possibilities of identifying recurring
phases automatically [7], but for our purposes simple manual

(a) Scalasca analysis report explorer with MPI point-to-point communication
time metric selected (left pane). With 6.55 seconds, iteration 232 of 942
(middle pane) is one of the more expensive ones, and the marked call path
to the MPI Send operations is distinguished by a particularly pronounced
imbalance across the 32 processes, with times varying from only 0.01s for
rank 24 to 0.41s for rank 27 (right pane).

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Graph of MPI point-to-point com-
munication time per iteration with
maximum (red), median (blue), and
minimum (green) process values.

(c) Value map of MPI point-to-
point communication time per iter-
ation for each process with higher
values shown darker.

Fig. 1. Different views for analyzing the time-dependent behavior of a 32-
process 129.tera tf experiment from the SPEC MPI 2007 suite with Scalasca.

instrumentation similar to that presented in [8] was sufficient.
This extension made it possible to generate more fine-grained
measurement reports, and results in a wealth of invaluable
insights not possible before. As demonstrated in our study
of the SPEC MPI 2007 benchmark suite [9], there is a wide
variety of performance behavior patterns to be explored in
the time dimension, ranging from periodic or irregular peaks
in communication or computation metrics, through gradually
changing execution times in subsequent iterations, to sudden
transitions of the base-line behavior. Moreover, performance
behavior is often subject to significant process-dependent
variations, i.e., the performance behavior can be a function
of both time and space as demonstrated in Fig. 1.

An interesting example of this is shown in our study [10]
of plasma simulation with PEPC — an adaptive code that
re-balances workload after each time-step. In an execution

210921052101

[#]
[s] Original

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[#]
[s] Reconstructed

0 200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 2. Comparison of the original, uncompressed iteration graphs and value maps of MPI Point-to-point communication count (left) and time (right) with
those reconstructed from 256 profile clusters for 1,300 timesteps of PEPC execution with 1,024 processes on BG/P.

using 1,024 processes on IBM Blue Gene/P, the performance
bottleneck was caused by a gradually growing communication
imbalance on only a handful of processes, but the bottleneck
moved on to neighboring processes after each time-step due
to workload re-balancing. As seen in the upper part of Fig. 2,
over the course of 1,300 timesteps, as PEPC continually
re-distributes particles to balance the computational work
between the 1,024 processes, a few processes rapidly acquire
very large numbers of particles. The number of MPI point-to-
point communications and the associated communication time
grow proportionally to the number of particles a process is
responsible for. Since a one-dimensional list of processes is
employed, the hot-spots with the largest numbers of particles
gradually migrate to adjacent processes as the simulation
evolves. A simple profile without the time dimension has
limited value, as it only shows that the bottleneck was present
on every process but not that it was not present on all at the
same time and moving to new processes every iteration.

IV. ITERATION PROFILE CLUSTERING

A significant problem with iteration instrumentation is that
the introduction of the time dimension makes the amount of
data collected proportional to the number of iterations, and
memory usage and file sizes can become impractical. This is
a serious limitation, as memory space tends to be at a premium
on highly parallel machines like IBM Blue Gene, and the
increased file sizes can lead to expensive, prolonged report
writing times. Also, post-processing and report examination
typically happens on standard desktop machines with limited
memory and storage capacity, and become impractical when
working with very large amounts of data.

However, it is clear that there is a huge amount of redun-
dancy inherent in these measurement results, as subsequent
iterations of the same code loop often have very similar

call trees and very similar overall performance characteristics.
Thus, it is a waste of resources to collect every iteration sepa-
rately. Based on these observations, a compression algorithm
was developed to exploit the redundancy. The growing impor-
tance of the problem is shown by the fact that other groups
have also looked at the compression of performance data, us-
ing compressed complete call graphs [11] or a clustering-based
method compressing data along the process dimension [12].
The requirements for our algorithm were quite restrictive: it
had to be very low overhead, both in time and storage, as
it is used during measurement where keeping our footprint
at a minimum is a must. It had to be an on-line algorithm,
taking decisions on-the-fly as data arrives, and adapting to
changes in the performance behavior dynamically. This is
because we can’t collect all data before starting to compress
it, since we want to keep the all-time memory usage of the
measurement system at a minimum. Some of the data could
be compressed in a lossy way, as minor differences from
the original performance metrics can be tolerated, but other
aspects such as the call-tree structure of each iteration had to
be retained exactly as they occurred.

The algorithm is based on the idea of incremental clustering,
collecting the metric profiles of similar iterations to the same
cluster — and of dissimilar ones into separate clusters — as
they are generated while measurement of the target application
progresses. As the temporal patterns in the applications’ per-
formance characteristics can show strong process-dependent
variations, clustering is done separately on each process. This
has the added benefit that no synchronization or communi-
cation between the processes is necessary at run time. The
algorithm is lossy in the sense that the compressed data no
longer contains all the information necessary to restore the
original data, however, our evaluations show that the result of

211021062102

Fig. 3. Incremental on-line clustering of iteration call-tree profiles into a
maximum of four clusters. (i) The call-tree profiles for the first four iterations
are stored directly, yet distinguished into two equivalence classes. (ii) The call-
tree profile for iteration 5 is matched to the equivalence class of iteration 1.
(iii) The pair of clusters with the shortest separation distance (here 3 and 4)
are merged to retain only the desired number of clusters.

the reconstruction comes very close to the original data.
Simple, direct control over the tradeoff between resource

usage and compression quality is possible by specifying the
desired cluster count. As long as the cluster count is not
reached, each iteration is stored as a separate cluster. When
the desired cluster count would be surpassed, the most similar
clusters are merged to keep the cluster count constantly at the
desired level, as illustrated in Fig. 3. Clusters associated with
more than one iteration store the average of the performance
data from those iterations over all call paths of their call trees.
So-called “phantom call paths,” that were not executed in
that iteration but only in other iterations of the same cluster,
would result in confusing analysis. These are avoided by
only merging iterations with identical call trees. The distance
function used to determine the similarity of two clusters is the
Manhattan distance of the vectors of overall metric values,
containing a single normalized entry for each metric. Much
more information would be available if we compared values
on every call path of the call trees separately, but to keep
overheads low and avoid the curse of dimensionality, we
restrict the comparison to the overall values. Also, a heuristic
function is applied to the distance computation that makes
the merging of clusters with high element counts increasingly
less likely. This is because exact data for one-off events, which
are likely to be noise, is far less interesting than the detailed
representation of those phenomena that occur most often. Our
evaluations show that applying this heuristic greatly increases
the fidelity of our final compressed data.

Clustering with 256 profile clusters and the reconstruction of
individual time-step iterations for the challenging example use
case provided by the PEPC plasma simulation code is shown
in the lower part of Fig. 2. Note the slight compression quality
difference between the communication count (left) and time
(right) metrics: in general, exact representation of time-based
metrics is not possible, due to their susceptibility to noise and
irregular variations, while even lower cluster counts tend to
be enough for an almost perfect representation of count-based
metrics, even in complex cases. Most applications have much

simpler behavior, where even better compression ratios can be
achieved while still maintaining high compression quality.

V. COMPLETE INTEGRATION

Finally, the techniques were integrated producing a mea-
surement system capable of the collection, analysis and com-
pression of time-dependent performance data collected using a
hybrid approach based on both call-stack sampling and instru-
mented events. The hybrid approach’s ability to collect exact
communication metrics was important, as it helps directing
the algorithm’s decisions to create the best clustering. Also,
given the stochastic nature of sampling, new call-tree structure
matching algorithms had to be developed, comparing only
the call paths leading to communication calls (which are still
deterministic), since exact comparison of the statistical data
we have about the user call paths would be meaningless. The
integrated solution is currently being evaluated applying all the
above features together to a representative set of applications,
and will be available in a forthcoming release of Scalasca.

REFERENCES

[1] Scalasca. Scalable performance analysis of large-scale parallel
applications. [Online]. Available: http://www.scalasca.org/

[2] B. J. N. Wylie, M. Geimer, B. Mohr, D. Böhme, Z. Szebenyi, and
F. Wolf, “Large-scale performance analysis of Sweep3D with the
Scalasca toolset,” Parallel Processing Letters, vol. 20, no. 4, pp. 397–
414, Dec. 2010.

[3] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call graph
execution profiler,” SIGPLAN Notices, vol. 17, no. 6, pp. 120–126, 1982.

[4] N. Froyd, J. Mellor-Crummey, and R. Fowler, “Low-overhead call path
profiling of unmodified, optimized code,” in Proc. 19th Int’l Conf. on
Supercomputing (ICS, Cambridge, MA, USA). ACM, 2005, pp. 81–90.

[5] A. Morris, A. D. Malony, S. Shende, and K. Huck, “Design and
implementation of a hybrid parallel performance measurement system,”
in Proc. 39th Int’l Conf. on Parallel Processing (ICPP, San Diego, USA).
IEEE Computer Society, September 2010, pp. 492–501.

[6] Z. Szebenyi, F. Wolf, B. J. N. Wylie, T. Gamblin, M. Schulz, and B. R.
de Supinski, “Reconciling sampling and direct instrumentation for the
performance analysis of parallel programs,” in Proc. 25th Int’l Parallel
and Distributed Processing Symposium (IPDPS, Anchorage, AK, USA).
IEEE Computer Society, 2011.

[7] M. Casas, R. M. Badia, and J. Labarta, “Automatic phase detection
of MPI applications,” in Proc. of the Conference on Parallel Computing
(ParCo, Aachen/Jülich, Germany), ser. Advances in Parallel Computing,
vol. 15. IOS Press, September 2007, pp. 129–136.

[8] S. Shende, A. Malony, A. Morris, S. Parker, and J. Davison de St.
Germain, “Performance evaluation of adaptive scientific applications
using TAU,” in Proc. Int’l Conf. on Parallel Computational Fluid
Dynamics (Washington DC, USA), May 2005.

[9] Z. Szebenyi, B. J. N. Wylie, and F. Wolf, “SCALASCA parallel
performance analyses of SPEC MPI2007 applications,” in Proc. 1st
SPEC Int’l Performance Evaluation Workshop (Darmstadt, Germany),
ser. Lecture Notes in Computer Science, vol. 5119. Springer, 2008, pp.
99–123.

[10] ——, “Scalasca parallel performance analyses of PEPC,” in Proc.
Workshop on Productivity and Performance (PROPER) in conjunction
with Euro-Par 2008 (Las Palmas de Gran Canaria, Spain), ser. Lecture
Notes in Computer Science, vol. 5415. Springer, 2008, pp. 305–314.

[11] A. Knüpfer and W. E. Nagel, “Construction and compression of com-
plete call graphs for post-mortem program trace analysis,” in Proc. Int’l
Conf. on Parallel Processing (ICPP, Oslo, Norway). IEEE Computer
Society, June 2005, pp. 165–172.

[12] T. Gamblin, R. Fowler, and D. A. Reed, “Scalable methods for monitor-
ing and detecting behavioral equivalence classes in scientific codes,”
in Proc. 22nd Int’l Parallel and Distributed Processing Symposium
(IPDPS, Miami, FL, USA). IEEE Computer Society, 2008.

211121072103

