
Concepts and Design of an Interoperability Reference Model for
Scientific- and Grid Computing Infrastructures

Morris Riedel, Achim Streit, Thomas Lippert, Felix Wolf
Juelich Supercomputing Centre

Forschungszentrum Juelich
Wilhelm-Johnen-Str. 1, D-52425 Juelich

Germany
m.riedel@fz-juelich.de

Dieter Kranzlmueller

Department for Informatics
Ludwig Maximillians University Munich

Oettingenstr. 67, D-80538 München
Germany

Abstract: - Many production Grid and e-science infrastructures offer their broad range of resources via services to end-
users during the past several years with an increasing number of scientific applications that require access to a wide
variety of resources and services in multiple Grids. But the vision of world-wide federated Grid infrastructures in
analogy to the electrical power Grid is still not seamlessly provided today. This is partly due to the fact, that Grids
provide a much more variety of services (job management, data management, data transfer, etc.) in comparison with
the electrical power Grid, but also the emerging open standards are still partly to be improved in terms of production
usage. This paper points exactly to these improvements with a well-defined design of an infrastructure interoperability
reference model that is based on open standards that are refined with experience gained by production Grid
interoperability use cases. This contribution gives insights into the core building blocks in general, but focuses
significantly on the computing building blocks of the reference model in particular.

Key-Words: Scientific Computing, Grid Computing, HPC, HTC, Interoperability

1 Introduction
Computational simulations and thus scientific computing
is the third pillar alongside theory and experiment in
science and engineering today. The term e-science
evolved as a new research field that focus on
collaboration in key areas of science using next
generation computing infrastructures such as Grids to
extend the potential of scientific computing.
 More recently, increasing complexity of e-science
applications that embrace multiple physical models (i.e.
multi-physics) and consider a larger range of scales (i.e.
multi-scale) is creating a steadily growing demand for
world-wide interoperable Grid infrastructures that allow
for new innovative types of e-science by jointly using a
broader variety of computational resources. Since such
interoperable Grid infrastructures are still not seamlessly
provided today, the topic ‘Grid interoperability’ emerged
as a broader research field in the last couple of years.
 The lack of Grid interoperability is a hindrance since
we observe a growing interest in the coordinated use of
more than one Grid with a single client that controls
interoperable components deployed in different Grid
infrastructures. In fact, we have shown in a recent

classification [10] that among simple scripts with limited
control functionality (i.e. loops), scientific application
client plug-ins, complex workflows, and interactive
access, there is also Grid interoperability mentioned as
one approach to perform e-science today.
 Such interoperable federated Grids have the potential
to facilitate e-research and thus scientific advances,
which would not be possible using only a single Grid
infrastructure. These advances arise from the advantages
that federated Grid resources provide, such as access to a
wide variety of heterogeneous resources, aggregated
higher throughput, and lower time-to-solution.
 In more detail, we observe that more and more Grid
end-users raise the demand to access both High
Throughput Computing (HTC)-driven Grids (EGEE,
OSG, etc.) and High Performance Computing (HPC)-
driven infrastructures (DEISA, TeraGrid, etc.) from a
single client or science portal. In this context, the
fundamental difference between HPC and HTC is that
HPC resources (i.e. supercomputers) provide a good
interconnection of cpus/cores while HTC resources (i.e.
pc pools) do not.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 691 ISBN: 978-960-474-124-3

 This joint use is typically motivated by the theory and
concept that tackle the scientific problem and is modeled
within the corresponding codes that in turn lead to some
codes that are ‘nicely parallel’ (i.e. HTC) and others that
are better suited to be computed as ‘massively parallel’
(i.e. HPC) simulations. In addition, the joint use of HTC-
and HPC-Grids is often motivated by the fact that often
end-users perform smaller evaluation runs with their
codes on HTC resources before performing full-blown
production runs on large-scale HPC resources. This
saves rare computational time on costly HPC resources
within HPC-driven Grids.
 This contribution highlights recent achievements in
defining the core building blocks of a Grid infrastructure
interoperability reference model (IIRM) that is based on
emerging open standards and there improvements based
on lessons learned from real interoperability use cases.
Although many aspects of the reference model have been
described by Riedel et al in [3], this paper provides much
more detail in the particular context of the core building
blocks in terms of computation. In this sense it
highlights the improvements of the emerging open
standards that have proven to be useful in production
Grids. In fact, more recently, the most elements of the
work provided within this contribution have been given
as an input into the OGF Production Grid Infrastructure
(PGI) working group in order to feed back our lessons
learned and interoperability application experience with
open standards into the standardization process.
 This paper is structured as follows. Following the
introduction, Section 2 sets the scene by discussing the
common challenges and benefits of Grid interoperability.
Section 3 describes the general design of the
interoperability reference model, while Section 4
provides many details to the improved concepts of open
standards. Finally, after surveying related work in
Section 5, we present our conclusions in Section 6.

2 World-wide Grid Islands
At the time of writing, it is an interesting time period for
European Grids in the sense of the upcoming transition
process from the project-based EGEE project to a longer
sustainable European Grid Initiative (EGI) while DEISA
and the Partnership for Advanced Computing in Europe
(PRACE) are jointly creating an HPC infrastructure for
emerging peta-scale applications. In the US, we see an
upcoming third phase of the TeraGrid in the context of
the extreme digital (XD) resources for science and
engineering transition.
 Nevertheless, what we learned from the past and what
we can expect from the future is that the underlying
computing paradigms will remain in the sense that
requirements for HTC and HPC will be still present.
That’s still valid even in times where, in principle, HTC
and HPC codes could be executed on one large-scale

cluster such as the IBM BlueGene/P while having thus
much more focus on the computed data itself instead on
the computational paradigms that are being used. More
recently this approach have been coined as many-task
computing that is rather close to the approach of Grid
interoperability in the sense of using HTC and HPC
concepts seamlessly and focusing much more on the data
aspect of the scientific applications.
 Since the difference between these underlying
computational paradigms (i.e. HTC and HPC) will still
exist in the future, interoperability between Grid
infrastructures that offers seamless access to both types
of computational resources will be further needed in
future. Since, we observe a rather slow adoption of
emerging open standards in deployed Grid middleware
systems on these infrastructures in the past; The Grid
communities and projects developed many different
approaches to Grid interoperability that are classified by
Riedel et al. in [10].
 What we observe in all of these approaches, that are
not only restricted to HTC and HPC infrastructure
interoperability, is that emerging open standards have a
high potential to achieve a reasonable basic level of
interoperability. But in terms of production use cases it
turns out that many standards that are adopted rather
slowly in production Grids lack some certain smaller
concepts. Often, the interoperability is achieved by doing
small workarounds; apply small hacks or changes to the
emerging standards to get not-fully supported concepts
working on a pair-to-pair basis between usually two
production Grid infrastructures.
 As a summary, common open standards are the one
and only way to enable a long-term seamless cross-Grid
access that goes beyond a pair-to-pair basis connecting
some of the so-called non-interoperable ‘Grid islands’.
This, however, implies that experience gained in
production Grid interoperability must be fed back to the
standardization process. Thus we have worked on the
understanding of how such standards can be further
improved to increase their adoption in production Grid
middleware.
 In fact, we have performed many interoperability
tests and worked with a wide variety of interoperability
use cases [2] in the context of the Grid Interoperation
Now (GIN) community group of OGF. The lessons
learned from all these activities have been given as an
input to the OGF Production Grid Infrastructure (PGI)
working group in order to improve existing emerging
open standards towards an improved production usage
following the well defined infrastructure interoperability
reference model [3]. In this working group, members of
UNICORE (deployed on DEISA), ARC (deployed on
NorduGrid), and gLite (deployed on EGEE) work
closely together with members of the US (e.g.
GENESIS-II) in order to define how these improved
standards can be seamlessly integrated into middleware.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 692 ISBN: 978-960-474-124-3

3 Reference Model Design
The lack of Grid interoperability is a hindrance since we
observe a growing interest in the coordinated use of
more than one Grid infrastructure from a single Grid
client, which is able to seamlessly use a variety of
computational resources in different Grid infrastructures.
 The fundamental idea of the Grid infrastructure
interoperability reference model (IIRM) is to formulate a
well-defined set of emerging open standards and
refinements of them in order to address the
interoperability needs of state-of-the-art production Grid
and e-science infrastructures. In order to identify this
well-defined set of standards, we worked with many
scientific interoperability use cases [1, 2]. Based on
these efforts, the lessons learned about the most crucial
functionality led to the core building blocks of the
reference model design as shown in Figure 1.

Fig.1 – The core building blocks of the infrastructure
interoperability reference model in the context of state-
of-the art scientific and Grid computing infrastructures.

As shown in Fig. 1, the core building blocks are well
embedded in the typical environments of Grid
infrastructures with numerous types of clients accessing
them in order to execute different types of applications
that are typically based on different computing
paradigms (i.e. HTC, HPC) using some kind of shared
scientific data. In the most cases, different production
Grid infrastructures exist to satisfy these demands that
are HPC-driven Grid infrastructures (i.e. TeraGrid,
DEISA) with large-scale HPC resources and HTC-
driven Grids (i.e. OSG, EGEE) with a high amount of
smaller clusters or PC pools.
 In addition, in many applications use cases we
encountered the demand for joint data storages since data
is fundamentally different from computation in the sense
that data once stored in one technology must be migrated
in a time-consuming effort. In computing, on the other
hand, the submission and management of the

computational jobs itself can be easier changed to
another infrastructure although also this implies certain
problems (e.g. differences in job description).
 Hence, the identified most crucial functionality to
actually enable interoperability between production Grid
infrastructures is data management and control,
including the data transfer, as well as job management
and control. In context of the latter, there is also the
execution environment important, for instance to have
common environment variables that describe different
boundary conditions (e.g. available memory, CPUs, etc.)
for the application execution during run-time.
 Apart from this functionality, there are two special
kinds of elements of the design that are security and
information. A common security setup is in the most
cases the major showstopper to enable interoperability
between Grid infrastructures and as it affects basically
every layer in can be considered as a rather vertical
building lock (cp. Fig. 1). The same is valid for
information that refers to the up-to-date information
about the computational Grid in general and each of its
computational resources in particular. These pieces of
information are reaching from the amount of available
CPUs to a list of supported applications and services.
 Less used in our interoperability use cases have been
self-management functionality or service level
agreements that are often used in other use cases
together with a meta-scheduling framework.
Investigations in production Grid infrastructures reveal
that these frameworks as well as self-management
functionality is rather experimental and not used in
production Grids on a daily basis.
 Further investigations [2] in production Grids reveal
that the most interoperability use cases are often based
on emerging open standards including some
modifications and thus small refinements of them. By
taking our various lessons learned into account, these
open standards (including refinements) can be in turn
easily mapped to the core building blocks of the
reference model design as shown in Fig. 2. In this
context, we refer to profiling in the sense of defining
small refinements of the used open standards that have
been proved useful in numerous interoperability use
cases and thus majorly improve the effectiveness of the
emerging open standard.
 As shown in Fig. 2, the significant improved
standards are the Storage Resource Manager (SRM) [4]
data control interface as well as the WS-Database Access
and Integration Service (WS-DAIS) [5] data
management interface. In terms of wide-area data
transfer, mostly GridFTP or HTTP(S) is used in the
scientific use cases. The core building block of job
management and control is represented by improved
versions of the OGSA-Basic Execution Service (BES)
[6] and the Job Submission and Description Language
(JSDL) [7]. The environment profile is somehow

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 693 ISBN: 978-960-474-124-3

different since its standardization was started within the
GIN community group, but not yet finalized as proposed
standardization document. The information standard that
plays a very important role in the design model is the
GLUE2 [8] standard including some small refinements.
Finally, the security profile refers to a broader range of
authentication and attribute-based authorization
standards basically based on X.509 and the Security
Assertion Markup Language (SAML) [9].

Fig. 2 – The reference model core building blocks are
based on refined open standard profiles.

Because of the page limitation, we are not able to cover
all the details of all the core building blocks. Therefore,
this contribution focuses on the OGSA-BES and JSDL
profile building block including some aspects of the
environment profile as well. For more overall pieces of
information about the other building blocks of the
reference model please refer to Riedel et al. [3].

4 Computational Concepts
The whole IIRM is based on lessons learned gained from
using the emerging open standards in real production e-
science interoperability applications. In this context, the
paper focuses only on the improvements related to the
emerging standards OGSA-BES and JSDL while an
overall description of the reference model itself can be
found in [3].
 We gained a lot of experience in the past several
years with using the OGSA-BES service implementation
not only for pure demonstration purposes, but also for
real interoperability use cases that require resources in
more than one Grid infrastructure. While working with
these different Grid applications, we encountered several
limits in using the OGSA-BES specification in several
scientifically-driven interoperability use cases among
several infrastructures. These limitations have been
addressed by many different concepts that lead to the

proposed improvements of the emerging open standards
that we describe within this section in more detail.
 When comparing these improved concepts, we
outline that the OGSA-BES specification concepts do
not fit the requirements of production e-science
infrastructure job management as experienced by use
cases such. This is also true when combining it with
profiles such as the High Performance Computing (HPC)
– Basic Profile (BP) that also not cover all of the
following concepts. We thus argue that the scope of the
OGSA-BES specification must be extended in the case
of scientifically driven Grid infrastructures even if this
means a decrease in modular approaches of reusing the
OGSA-BES specification in numerous other use cases.
 In fact, the broad variety of how the OGSA-BES
specification can be used with numerous other security
setups and profiles lead in several of our application use
cases to a significant decrease in successful
interoperability setups. Therefore the goal of the IIRM in
general, and the improvements of OGSA-BES in
particular is to profile exactly how this improved OGSA-
BES can be used in the context of deployed components
for information handling, data transfer, and storage
management as well as security.
 Taking the lessons learned of many problems in
interoperability into account, it becomes clear that job,
data, and storage management can be seen as one atomic
entity as initially proposed by Riedel et al. in [18]
described by using the UNICORE Atomic Services
(UAS) as reference implementation at that time. The
UAS provide Web service interfaces for all these parts,
but are rather proprietary compared to the OGSA-BES,
SRM, and other specifications. Nevertheless, the
approach of specifying all these different areas together
is the approach we found majorly important while
dealing with multi-infrastructure e-science applications.
In other words, if one little element is slightly different
specified and implemented (e.g. one JSDL-based
extension is supported in e-research tool A, but not in e-
research tool B) it has a high potential to break the whole
interoperability setup.
 Also important is to specify at least one output
mechanism that acts as default in the improved OGSA-
BES specification to avoid the problem of specifying a
raw interface that can be used to submit jobs, but not
getting any results. In this context, the output transfer is
tightly coupled with storage functionality and thus also
part of the ’atomic entity’ mentioned above. As a side
remark, the ’atomic’ term is not meant as ’atomic
transaction’ but rather indicating that job, data, and
storage management must be closely defined together as
within the IIRM to enable interoperability usable for
production applications. Hence, core job submission,
storage, and file transfer functionality must be seen as
one atomic entity allowing possible ways of extending
(e.g. alternative data-staging technologies/profiles).

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 694 ISBN: 978-960-474-124-3

4.1 Improving Common Open Standards
This section discusses the identified concepts that directly
affect the execution service interface and thus our
proposed improvements of the OGSA-BES interface. For
each of the concepts we also reveal the context of our
work with e-research applications that require resources
in more than one e-science infrastructure and in turn
substantially contributed to our proposed improvements.
 In general, we can state that the OGSA-BES
specification is very good first step towards the right
direction. This is acknowledged where several required
concepts are actually already provided by this
specification. To provide an example, in the WISDOM
[1] and EUFORIA [19] use case, we actually succeeded
in submitting a job from the EGEE infrastructure to the
DEISA infrastructure and vice versa using the OGSA-
BES interface of gLite and UNICORE. We have been
able to submit simple jobs while simple refers to the fact
of having one executable without very specific resource
requirements (e.g. used network topology on a resource).
 Also, the cancellation of submitted jobs and their
status retrieval also worked fine across the different
infrastructures. An interesting concept provided by the
OGSA-BES specification was the remote management
features that have been marked as deprecated in the
improvements since we learned that administrators in
production infrastructures typically would like to retain
local resource control and are not in favor of service
management operations that can be remotely invoked.
But despite several advances in interoperability, we also
have to state that there are a lot required concepts that are
not in OGSA-BES or JSDL adoptions today.

Fig. 3 – OGSA-BES / JSDL defines functionality for
staging data automatically performed via the
middleware.

 One example for the most important missing concept
initially originated from the WISDOM use case and we
refer to this concept as client-initiated data-staging. In
the context of this application, it is important to
understand that exactly between the workflow step 1
(molecular docking) and step 2 (molecular dynamics, i.e.
simulation over time) manual intervention is necessary by
the scientists in order to evaluate which docking data
actually makes sense to be computed using highly costly
supercomputing time. Hence, the scientists manually
analyzes the data and afterwards raise the requirement for
our an approach that enables ’client initiated data-

staging’ to one specific site where a particular job should
be executed.
As shown in Fig. 3, as part of JSDL, end-users are able to
specify which data should be staged-in by the Grid
middleware and we refer to this approach as ’data pull’.
Nevertheless, in many of our use cases, there was a
specific need by scientists that data has to be staged-in
manually to the working space of the corresponding Grid
job (i.e. activity). In one particular example, the
WISDOM scientists actually would like to submit a job
to the UNICORE-BES implementation and before the
activity is being started, the scientists use meta-data
stored in a WS-DAIS-compliant database and GridFTP to
trigger an client-initiated data-staging that only transfers
a specific data subset of workflow step 1 (molecular
docking) outcomes for computation on the DEISA
infrastructure.

Fig. 4 – Data-push as improvement concept versus
already existing data-pull in the context of a real
interoperability use case application using the EGEE
and DEISA infrastructure.

This particular concept and thus the identified
improvement of the standards is shown in Fig. 5 (blue
text and lines). More information about this particular e-
science application with data-staging using relational
databases can be found in Holl et al. [20].

Fig. 5 – Improved OGSA-BES / JSDL defines
functionality for staging data manually performed via
the client.

A closer investigation of this concept reveals that two
more related concepts are actually required to achieve
this. First, this concept raises the demand for the concept
of job working directory access, which refers to the
client knowledge of the location of the job sandbox (i.e.
directory) where the submitted job will be executed.
Second, the submitted job should not start until the

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 695 ISBN: 978-960-474-124-3

client-initiated data-staging has been performed and thus
this leads to the concept of Predefined Hold points. If
this is not provided, the scientists manually transfer sub-
elements of the data into the file system GPFS of DEISA
and UNICORE-BES in turn would have to stage-in the
data for computation into the working directory thus
leading to a second not necessary file transfer.
 All these three concepts are at the time of writing not
supported by the OGSA-BES specification, but can be
easily achieved by providing the job location, if possible,
as an immediate result of the submit operation (i.e.
createActivity) or providing a suitable way of obtaining
this location via a query about job information later. This
location is important so that end-users (or corresponding
client software) knows where data can be staged close to
the created Grid job. Of course, this location can be also
retrieved with another operation that queries information
about one particular Grid job, but we found that this then
requires yet another communication exchange and thus
was considered to be more efficient when the location
information can be encoded in the outcome of a job
submission (if possible). Apart from the WISDOM use
case, we learned that also other use cases such as
EUFORIA, or VPH [3] welcome this concept in order to
use this location to perform a direct SSH connection into
the working directory. This has been proved to be useful
in order to enable higher-level concepts such as
computational steering of Grid jobs or checking the data-
writing progress of one Grid job while running.
 Another aspect to realize the ’client-initiated data-
staging’ins the concept of using ’Predefined Hold points’
that can be described with ’states’. This means that after
a Grid job is submitted and its JSDL has been parsed and
the implied data-staging activities have been performed,
the job should not directly start in order to wait for any
kind of client-initiated data-stagings. In order to
communicate this, scientists can specify so-called hold
points in the improvements of the JSDL-based job
submission. The job description is the right place for
specifying this since the position of the hold-points are
often related to the nature of the execution itself while a
more general and flexible manual suspend functionality
is defined in the context of the interface itself.
 In the WISDOM example and in the context of
workflow step 2 (molecular dynamics), one hold-point is
always at the data-staging-in state in order to allow that
WISDOM scientists can transfer a suitable subset of data
from the molecular dockings before the job is actually
starting to run in DEISA. We also learned from the
WISDOM use case that from time to time a
computational job should be just suspended, which can
be also achieved by providing another hold-point during
the ’job-execution’ state. However, this is not clearly
directly related to the job itself and thus this concept of
is rather implemented on the execution service interface
level. This concept enables, for instance in our

WISDOM use case, an evaluation of the already
simulated molecular dynamics time frame in order to
check if ’invalid movements’ might already occur and
thus make it unnecessary to continue the simulation. In
the most cases this was related to the fact that sometimes
computed data can be easily analyzed by the e-scientists
that in turn immediately decide whether the data is
useful or was just another evaluation run that should be
not transferred in data-staging activities to more
permanent storages.
 The above discussion about ’suspend’ leads to a more
generic discussion when observing the necessary
’resume’ functionality and maybe even other rather
manual state changes. In this context, a concept that was
typically missing in interoperability use cases was thus
the Manual manipulation of job states concept, which
can be implemented with an operation such as
changeActivity() within the execution service interface.
But this particular operation is non-trivial since it raises
several concerns and was left out initially in the OGSA-
BES specification for reasons related to the extensibility
of the implied job status model. Hence, additionally
supported states might not be known by clients and thus
invoking such an operation with an unknown state model
might cause serious trouble, for instance the uncertainty
in picking the correct state to move an activity to.
 We address this issue within the IIRM by explicitly
profiling allowed state changes and defining a state
model that is sufficient, but still extensible like the one
in the OGSA-BES specification. Nevertheless, we
encountered several times, not only in the WISDOM,
EUFORIA or VPH application that this operation should
be provided by an improved OGSA-BES specification.
The benefit of this operation is twofold. First, it provides
an operation that allows e-scientists to explicit start an
activity once the potentially manually performed data-
staging step is finished. It thus also plays a crucial role in
the ’client-initiated data-staging’ concept stated above in
order to enable e-scientists with the possibility to finish
the data-staging when they want. Second, it provides the
functionality to suspend or resume a running Grid job in
general, although this raises the requirement that
underlying resource management systems support these
feature, which was not always the case in our
experiences. In this context, the GLUE2-based
information service that provides information about any
improved OGSA-BES endpoint must expose information
whether this feature is supported or not.
 This operation demands a well-defined fine-granular
state model, which also includes our concept of Data
staging in state model. In the WISDOM example, in the
concept of workflow step 1 (molecular docking), a lot of
initial input data (ligands, proteins, etc.) are staged-in
before the job actually starts. However, the e-scientists
often did not recognize why the job is not running was
related to the fact of a long-lasting data-staging-in

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 696 ISBN: 978-960-474-124-3

activity. There is currently no mechanism in the state
model in the OGSABES specification that indicates that
a data-staging activity is currently performed by the
service implementation and thus we propose this as one
of the concepts that are required. In a more broader
sense, it is important to understand that already small
differences even in the state terms (e.g. finished vs.
ready) several times broke our interoperability setups or
majorly influenced its success. We thus argue that a list
of commonly agreed state terms between the different
infrastructures and middleware providers is crucial and
often its value is underexpected or oversimplified with
respect to state extensions that cause serious problems.
 Apart from the WISDOM use case we also
encountered the need to completely wipe out an activity
that include removing all temporary files and other
resources allocated to the correspondent Grid job. This
concept is not defined in the OGSA-BES specification
so far, but required in several interoperability use cases
and thus considered in the improved OGSA-BES
specification.
 One particular use case is to use this concept to clear
all storages related to data-staging activities as well as all
evidence of the submission. Note the difference
compared to the concept of terminating or cancelling
Grid jobs where the activity still exists in the services in
a suitable terminated or cancelled state. In contrast, the
concept of Wipe-out of submitted jobs means that the job
is not longer available in the Web service container.

5 Related Work
There is a wide variety of approaches in related work in
the field of Grid interoperability that we list here. The
most of these approaches don’t use the approach of
improving open standards and as such rather implement
‘transformation logic’ in one way or the other. This
transformation logic is responsible to translate a protocol
A into protocol B or a schema A into schema B. This
process is typically very time consuming and error-
prone.
 Furthermore, it is very difficult to maintain since if
one element is changed different versions of these
transformation logics have to be maintained. In addition,
often it implies that a protocol is not fully able to being
mapped to another. Hence, the result of transform
protocol A into protocol B might actually lead to a
protocol B* that is often only a subset of protocol B.
 The most famous and thus most common approach is
the additional layer concept, which enables
interoperability by having a layer with transformation
logic on top of different Grid technologies (i.e. Grid
middleware). This transformation logic is responsible to
change the job description formats and protocols to the
corresponding ones supported by the respective
middleware. This concept is implemented in Grid portals

like GridSphere [12] or APIs like JavaGAT [13] or GPE
[14] and thus this additional layer is often located on the
client-side.
 The fundamental idea of the bridge approach is to
introduce a neutral protocol that can be always used by
clients since it is not affected to changes in the Grid
middlewares. This neutral protocol is used to contact the
neutral bridge implementation, which in turn uses its
transformation logic to change the neutral protocol in the
different proprietary formats for each of the
corresponding Grid middlewares. This approach is taken
to achieve the interoperability between the CORBA-
based Integrade middleware and Globus Toolkits as
described by Stone et al. in [15].
 The gateway approach refers to one central entity that
is able to translates any middleware protocol into any
other middleware protocol using its transformation logic.
It is used, for instance, to realize the interoperability
between the European infrastructure EGEE and VEGA,
which is the Grid Operating System (GOS) for the
CNGrid infrastructure in China. Kryza et al. describes in
[17] that the interoperability is achieved via a universal
interoperability layer named as Grid Abstraction Layer
(GAL) that can be seen as one instance of a gateway. By
implementing the gateway approach, the GAL not only
enables the interoperability between egee and vega, but
also allows for the integration of any other Grid
environments.
 The mediator approach is similiar to the neutral
bridge approach, but instead of using a neutral protocol
the respective client technology sticks to one specific
protocol A. This protocol can be used to access all Grid
middleware’s that natively support this protocol A, but
also it can be used to access known mediators. These
central mediators are always used via one specific
protocol, but are in turn able to translate it into any other
protocols with their implied transformation logic. This
approach is adopted in the technologies that make EGEE
interoperable with BOINC-based infrastructures as
described by Kazsuk et al. in [16].
 Another often applied approach is the adapter
approach. This means a typical Grid middleware client
submits with Protocol A its job to the respective Grid
middleware, which in turn, after processing the job
description, executes the job or forwards it to a dedicated
adapter. This adapter in turn provides the transformation
logic that transforms the job into the format of the
corresponding other Grid middleware. Hence, the
difference to other approaches such as mediator is that
the Grid job is actually processed in one middleware
stack before being forwarded to another middleware
stack B for execution. This approach is adopted to
achieve the interoperability between UNICORE 5 and
gLite as described by Riedel et al. in [2].

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 697 ISBN: 978-960-474-124-3

6 Conclusion
In this paper, we raised the demand for an infrastructure
interoperability reference model to promote
interoperability between production Grids today. We
have shown the basic design reference model and have
highlights some of their core building blocks in the
context of computation.
 Since our work is fundamentally based on lessons
learned from real production Grid interoperability use
cases, we using improvements of common open
standards, which in turn are already deployed on the
production infrastructure. Hence, we many of the core
building blocks of the IIRM and many of them are
already deployed on the infrastructures and only minor
changes (i.e. missing links, refinements, etc.) have to be
done in order to achieve interoperability in production
Grid infrastructures today.
 Since our evaluation use cases have been very
successful, we have given the IIRM as an input to OGF
by creating a GIN spin-off activity named as the PGI
working group. By chairing this group, our goal is to
standardize the IIRM elements and thus feed back our
valuable production experience into the standardization
process of OGF.
 With having participants from many important Grid
infrastructures such as DEISA, EGEE, NGS, NorduGrid,
and ARC, we are looking forward to get the core
building blocks for our proposed IIRM design
standardized very soon. This will significantly contribute
to the vision of having an interoperable united federation
of world-wide Grid infrastructures in the near future
offering standardized access.

References:
[1] Riedel, M., et al.: Improving e-Science with
Interoperability of the e-Infrastructures EGEE and
DEISA. In: Proceedings of the MIPRO (2007)
[2] Riedel, M., Laure, E., et al.: Interoperation of World-
Wide Production e-Science Infrastructures. In: Journal
on Concurrency and Computation: Practice and
Experience (2008)
[3] M. Riedel, F. Wolf, D. Kranzlmüller, A. Streit, T.

Lippert Research Advances by using Interoperable e-
Science Infrastructures - The Infrastructure
Interoperability Reference Model applied in e-
Science, Journal of Cluster Computing, Special Issue
Recent Advances in e-Science

[4] Sim, A., et al.: The Storage Resource Manager
Interface Specification Version 2.2. OGF Grid Final
Document Nr. 129 (2008)

[5] M. Antonioletti, M. Atkinson, A. Krause, S. Laws, S.
Malaika, N. Paton, D. Pearson, G. Riccardi , Web
Services Data Access and Integration - The Core
(WS-DAI) Specification, Version 1.0

[6] I. Foster et al., OGSA Basic Execution Service
Version 1.0. Open Grid Forum Grid Final Document
Nr. 108, 2007.

[7] A. Anjomshoaa et al., Job Submission Description
Language (JSDL) Specification, Version 1.0. Open
Grid Forum Grid Final Document Nr. 136, 2008.

[8] Website, “GLUE2 Open Grid Forum Grid Forge
Page,”https://forge.gridforum.org/sf/projects/glue-
wg.

[9] Cantor, S., Kemp, J., Philpott, R., Maler, E.:
Assertions and Protocols for the OASIS Security
Assertion Markup Language. OASIS Standard
(2005).

 http://docs.oasisopen. org/security/saml/v2.0/
[10] Riedel, M., et al.: Classification of Different

Approaches for e-Science Applications in Next
Generation Computing Infrastructures. In:
Proceedings of the Int. e-Science Conference,
Indianapolis, USA (2008)

[12] “GridSphere,” http://www.gridsphere.org/.
[13] V. Rob et al., “User-friendly and Reliable Grid

Computing Based on Imperfect Middleware,” in
Proceedings of the International Supercomputing
Conference 200, Reno, USA, 2007.

[14] R. Ratering et al., “GridBeans: Supporting e-
Science and Grid Applications,” in 2nd IEEE
International Conference on e-Science and Grid
Computing (E-Science 2006), Amsterdam,The
Netherlands, 2006.

[15] D. Stone et al., “A Model for Transparent Grid
Interoperability,” in Proc. of the CCGrid 2007
Conference, 2007.

[16] P. Kacsuk et al., “Towards making BOINC and
EGEE Interoperable,” in Proc. of the IGGIW
Workshop, e-Science Conference 2008, Indianapolis,
USA, 2008.

[17] Kryza, B., Skital, L., Kitowski, J., Li, M., Itagaki,
T.: Analysis of Interoperability Issues Between
EGEE and VEGA Grid Infrastructures. Springer-
Verlag (2006)

[18] M. Riedel and D. Mallmann, “Standardization
Processes of the UNICORE Grid System,” in
Proceedings of 1st Austrian Grid Symposium 2005,
Schloss Hagenberg, Austria. Austrian Computer
Society, 2005, pp. 191–203.

[19] EUFORIA project, http:// www.euforia-project.eu/
[20] S. Holl, M. Riedel, et al., “Life Science Application

Support in an Interoperable E-Science Environment,”
in Proceedings of IEEE CBMS 2009, special Track:
Healthgrid Computing - Applications to Biomedical
Research and Healthcare, 2009.

MATHEMATICAL METHODS AND APPLIED COMPUTING

ISSN: 1790-2769 698 ISBN: 978-960-474-124-3

