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Abstract—Writing efficient software for heterogeneous archi-
tectures equipped with modern accelerator devices presents a
serious challenge to programmer productivity, creating a need
for powerful performance-analysis tools to adequately support
the software development process. To guide the design of such
tools, we describe typical patterns of inefficient runtime behavior
that may adversely affect the performance of applications that
use general-purpose processors along with GPU devices through
a CUDA compute engine. To evaluate the general impact of
these patterns on application performance, we further present
a microbenchmark suite that allows the performance penalty of
each pattern to be quantified with results obtained on NVIDIA
Fermi and Tesla architectures, indeed demonstrating significant
delays. Furthermore this suite can be used as a default test
scenario to add CUDA support to performance-analysis tools
used in high-performance computing.

I. INTRODUCTION

In view of the broadening requirements of today’s graphics
applications, graphics processors are shifting toward a more
generic architecture with enhanced programmability. Once de-
signed exclusively for computer graphics and difficult to pro-
gram, today’s graphics processing units (GPUs) are extremely
flexible parallel processors that are often used in combination
with general-purpose processors [1]. Whereas general-purpose
processors are optimized for low-latency access to data sets
stored in local caches, GPUs are optimized for data-parallel
throughput computations using many independent compute
cores. Accelerators designed in this way are usually referred to
as many-core architectures exhibiting hundreds of cores, each
linked to various memory spaces, which are accessible either
from all compute cores or only from distinct subgroups.

Driven by their growing demand for computational power,
developers of scientific applications increasingly take advan-
tage of these more flexible graphics-processor designs to
accelerate the general-purpose processors previously used in
isolation. In addition, powerful programming models such
as CUDA [2] and OpenCL [3] have emerged to harness at
different levels of abstraction the enormous processing capa-
bilities offered by these devices. In particular CUDA, primarily
developed by NVIDIA [4], is often used by developers be-
cause of the wide-spread availability of appropriate accelerator
hardware. Given that OpenCL and the frequently used PGI
compiler suite already include CUDA support, we focus in
this paper on patterns of inefficient performance behavior in
GPU applications based on CUDA.

The CUDA programming interface rests on a parallel com-
puting architecture and memory model for GPUs, on top of
which a dynamic execution model is specified. Defined as
an extension of the C programming language, the program-
ming model provides a software infrastructure that allows the
scheduling of lightweight compute kernels executing parallel
portions of the application on the graphics device. The device
distinguishes different memory spaces: registers and local
memory are visible only to a single thread, shared memory
to all threads from the same block, and finally global memory
to all threads from all blocks.

Accelerating scientific codes through GPUs requires har-
nessing much higher degrees of parallelism, with programming
models such as CUDA shielding the application developers
from details of the target architecture through suitable ab-
stractions. Given the complexity of the hardware and soft-
ware environment, tools that identify performance issues are
therefore crucial to ensure programmer productivity. To guide
the development of future programming tools for the CUDA
compute engine, this paper describes performance-critical pat-
terns of inefficient behavior. To evaluate the potential impact of
these patterns on application performance, we further present a
microbenchmark suite that allows the performance penalty of
each pattern to be quantified with results obtained on NVIDIA
Fermi and Tesla architectures.

The remainder of this article is organized as follows: After
identifying different patterns of inefficient runtime behavior
and classifying them in Section II, we present experimental
results to quantify the respective performance penalty of indi-
vidual patterns in Section III. Then, we review related work
in Section IV and, finally, summarize our results and outline
on future work in Section V.

II. PATTERN CLASSES

This section describes patterns of inefficient runtime be-
havior covering memory access and thread management sce-
narios. While the former refer to bank conflict, replication
copy, excessive global memory usage, memory coalescing, and
scattered host copy scenarios, the latter refer to thread register
imbalance, wait at barrier, and branch-diverging scenarios.

A. Memory access patterns

Given that on GPUs communication is primarily done
through memory operations, the memory usage may influence
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Fig. 1. Bank conflicts.

application performance. As a consequence, memory accesses
have to be optimized to raise the application performance.

1) Bank conflicts: To decrease memory access times to
shared memory, this memory space provides several inde-
pendent memory banks allowing consecutive addresses to be
fetched in parallel [5]. The execution is serialized, when
two or more threads concurrently access the same memory
bank. Such a scenario is referred to as a bank conflict and is
further illustrated in Figure 1. While the original case shows
two threads accessing the same memory bank resulting in
bank conflicts and so serialized memory accesses, the revised
version shows two threads accessing two different memory
banks reducing the aggregated memory access time and thus
resolving the previously observed bank conflicts.

2) Excessive global memory usage: One important resource
limitation on GPUs is that global memory has limited band-
width when serving data accesses. As a consequence, appli-
cation developers are encouraged to load their data from the
relatively slow global memory into the relatively fast shared
memory before the data is actually needed by their application.
This technique is often referred to as data prefetching and has
the potential to significantly improve the overall program ex-
ecution time [6]. An excessive global memory usage scenario
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Fig. 2. Excessive global memory usage.
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Fig. 3. Replication copy.

(Figure 2) shows up when the global memory is accessed
several times. The fast access time to shared memory may
reduce the overall runtime if data are accessed several times
in shared memory rather than in global memory.

3) Replication copy: Data prefetching only guarantees a
runtime benefit if the necessary data is accessed several times.
Otherwise, if the data is accessed only once, the scenario is
referred to as replication copy and exemplified in Figure 3.
Apparently in such a scenario, the additional data transfer
between global and shared memory can be avoided reducing
the overall execution time of the revised kernel.

4) Memory coalescing: On CUDA compute architectures,
memory transfers between global and shared memory are per-
formed in a word size of 128 bit. Given that smaller transfers
are padded to that size, copying smaller values between global
and shared memory reduces the overall transfer rate. As a
consequence, it is more efficient to coalesce narrow memory
references into wide ones. Even though compilers occasionally
perform memory coalescing automatically, developers are usu-
ally responsible for coalesced memory transfers by manually
aligning loads and stores. For example, in Figure 4 every
thread only copies 64 bit from global memory to shared
memory in the original case, but, like in the revised case, it is
more efficient if one thread copies two consecutive elements
in one operation.

5) Scattered host copy: The peak bandwidth between host
memory and device memory is much smaller than the peak
bandwidth among the different memory spaces of the device.
Furthermore if the set of input data is not transferred in a con-
secutive memory block, several temporarily scattered transfers
are necessary (Figure 5). Due to the transfer overhead, such
scattered host copy scenarios decrease the overall data transfer
rate between host and device memory. To increase the data
transfer rate between host and device, it is recommended to
gather such data and to invoke a single transfer.

B. Thread management

The coordinated access of threads to memory and compute
cores necessitates thread management primitives that may also
influence application performance.

1) Thread register imbalance: CUDA capable devices are
organized in blocks of execution units. Such a block is referred



to as a multiprocessor which provides a limited number of
thread slots and thread block slots. Of course, application
developers should use the maximum number of thread slots to
utilize the multiprocessor efficiently. If all registers are already
used by fewer thread blocks than the maximum number of
thread blocks, no further thread block can be scheduled on
the multiprocessor. In this scenario, which is referred to as
thread register imbalance and exemplified in Figure 6, thread
block slots are left unused, degrading the overall application
performance. Apparently, using shared memory instead of
registers can increase the performance of the revised kernel,
as illustrated in Figure 6.

2) Wait at barrier: CUDA allows threads of the same block
to coordinate their activities using a barrier. The time a thread
spends in a barrier is waiting time, no longer available to
perform calculations, which has to be avoided as much as
possible. This scenario, shown in Figure 7, is referred to as
wait at barrier. This scenario can be resolved by balancing
the load among threads, reducing the overall execution time.

3) Branch diverging: The execution of a thread block is
divided into warps with a constant number of threads per
warp. When threads in the same warp follow different paths of
control flow, these threads diverge in their execution [6] such
that their execution is serialized (Figure 8). Such a branch
diverging scenario can be avoided by aligning the branch
granularity to warps.

III. EVALUATION

After different patterns of inefficient runtime behavior have
been identified in Section II, this section describes our mi-
crobenchmark test suite used to evaluate individual pattern
instances and the experimental results for each pattern.

A. Microbenchmark test suite

For the pattern evaluation, we designed a microbenchmark
test suite, where the execution time of individual kernels is
measured. This environment consists of test kernels for each
pattern from the previous section and can be used as a syn-
thetic test case for the development of performance tools. More
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Fig. 4. Memory coalescing.
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Fig. 5. Scattered host copy

precisely, for each pattern the suite includes an original version
that has the described performance problem and a revised
version where this problem has been fixed. Measurements are
taken on a Fermi architecture with 1.5 GByte of main memory
(NVIDIA GeForce GTX 480) and a Tesla architecture with
4.0 GByte of main memory (NVIDIA Tesla T10).

B. Memory access patterns

1) Bank Conflicts: The microbenchmark for the bank con-
flict pattern is derived from a general-purpose Reed-Solomon
encoder and stores data arrays in the shared memory, which are
used as lookup tables and initialized prior to the computation.
In the original kernel, each array is initialized independently by
each thread of a block, which causes multiple bank conflicts. In
the revised version, the initialization is only performed by one
thread of a block although all table entries are still accessible
by all threads of a block.

Experimental results can be seen in Figure 9, which shows
speedup characteristics between the original and revised ver-
sions of individual test kernels. In all cases, measurements
taken on the Fermi architecture are shown in the left column,
whereas measurements taken on the Tesla architecture are
shown in the right column. We took 30 measurements per
kernel and averaged the results. According to our previous
assumption that bank conflicts increase the overall runtime,
the revised version of the bank-conflict kernel outperforms
the original version by a factor of 2.50 on Fermi and 18.95
on Tesla (Figure 9).
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Fig. 6. Thread register imbalance.
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Fig. 7. Wait at barrier.

2) Excessive global memory usage: The microbenchmark
for the excessive global memory usage pattern calculates (Ai+
Bi)·Ai ·Bi/(Ai+Bi) for two given arrays A and B, which are
stored in global memory. The revised kernel just copies both
arrays into shared memory before performing the calculation.
The measurement of these kernels shows a speedup of 1.20
on Fermi and 2.53 on Tesla (Figure 9), which may be larger
for even more complex functions.

3) Replication copy: The microbenchmark for the repli-
cation copy pattern is implemented by a simple adder that
calculates the element-wise sum of two arrays. The original
version uses shared memory to cache the values from the input
and output arrays, whereas the revised version just uses global
memory directly. As can be seen in Figure 9, the effects on
application performance are negligible because the speedup is
in the range between 1.03 on Fermi and 1.01 on Tesla.

4) Memory coalescing: The original kernel for the memory
coalescing pattern periodically copies 32 bit from global to
shared memory. In contrast, the revised version directly copies
128 bit and so uses the entire data rate from global to shared
memory. As can be seen in Figure 9, this optimized transfer
leads to a performance improvement with a speedup of 1.26
on Fermi and 4.18 on Tesla.

5) Scattered host copy: To demonstrate the severity of
scattered host copy pattern, the original kernel copies 1024
chunks of 1 KByte from the host to the device memory.
In contrast, the revised version copies 1 MByte in a single
stream from the host to the device memory. As can be clearly
seen in Figure 9, this approach leads to an speedup of 17.48
on Fermi and 63.09 on Tesla. Therefore, scattered host copy
scenarios can appear as a major performance bottleneck in
CUDA applications.
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Fig. 8. Branch diverging.
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Fig. 9. Experimental results for speedups on Fermi and Tesla

C. Thread management patterns

1) Thread register imbalance: On Fermi architectures a
single multiprocessor provides 1536 thread slots and 32K reg-
isters, whereas on Tesla architectures a single multiprocessor
provides 1024 thread slots and 16K registers. To leverage
the maximum number of thread slots, a single thread should
therefore use at most 21 registers on Fermi and 16 registers
on Tesla. The original kernel for the thread register imbalance
uses 23 registers to perform its calculations. In contrast, the
revised version just uses 16 registers. Given that both kernels
are scheduled in blocks of 512 threads, on both architectures
512 thread slots are not used by the original kernel. The revised
kernel shows a speedup of 1.01 on Fermi and Tesla (Figure 9),
which may be larger if a thread register imbalance pattern co-
incides with memory access patterns, impeding latency hiding
by the thread scheduler.

2) Wait at barrier: The microbenchmark for the wait at
barrier pattern is derived from the bank conflict kernel. After
assigning the array initialization to a single thread of a block,
the kernel performs significantly better but now most threads
of a block are idling during this initialization phase. In the
revised version, the array initialization is evenly distributed
among all threads within a block. As can be seen in Figure 9,
such load balancing can lead to a speedup of 1.36 on Fermi
and 2.89 on Tesla.

3) Branch diverging: The microbenchmark for the branch
diverging pattern calculates the Euclidean distance between
two given vectors. In the original version, threads of a warp
perform those calculations in an alternating fashion. Of course,
this scheduling results in branch diverging scenarios. In the
revised version, this scenario is avoided by aligning the branch
granularity to the warp size. As can be seen in Figure 9,
experiments show a speedup of roughly 1.42 on Fermi and
1.97 on Tesla, indicating that branch diverging may adversely
affect application performance.

IV. RELATED WORK

Implementing a test suite that demonstrates performance
properties for a certain programming paradigm is a wide-
spread technique to support the development of performance



tools. Hollingsworth et al. [7] released the Grindstone test
suite to demonstrate possible performance properties in PVM
programs. Grindstone focuses on communication patterns and
also targets computational bottlenecks. Designed by Gerndt et
al. [8], the APART test suite demonstrates MPI- and OpenMP-
related performance problems, differentiating between differ-
ent classes of performance properties.

To evaluate the capabilities of emerging accelerator archi-
tectures, Che et al. [9] examined a range of computationally
demanding applications and showed that those applications
could be significantly accelerated on graphics processors using
CUDA. In addition, Stratton et al. [10] introduced a frame-
work that allows CUDA programs to be executed effectively
on general-purpose multi-core processors. Their experimental
evaluation showed that CUDA is an advantageous data-parallel
programming model for more than just GPU architectures. To
also leverage parallelism of CUDA kernels on reconfigurable
devices, Papakonstantinou et al. [11] proposed an FPGA de-
sign flow that combines the parallelism of different accelerator
types (i.e., FPGAs and GPUs) through CUDA.

Finally, to support programmers in utilizing heterogeneous
hardware, some performance tools exists that offer rudimen-
tary support for CUDA. For example, the CUDA Visual
Profiler not only provides runtime profiles but also hard-
ware counter information associated with distinct execution
phases [12]. Offering similar functionalities as the CUDA
Visual Profiler, Parallel Nsight is available as a plug-in for
Microsoft Visual Studio that allows programmers to develop
for both GPUs and CPUs within the development environment
[13]. Vampir is a visual trace browser allowing the fine-grained
investigation of an application’s runtime behavior [14]. Vampir
can also be used to analyze the runtime behavior of CUDA ap-
plications since it provides visualization methods to illustrate
memory transfer and kernel execution phases [15]. The TAU-
CUDA profiler is able to measure CUDA applications using an
experimental NVIDIA device driver specifically extended for
performance measurements [16]. Boyer et al. [17] presented
a proof of concept tool for identifying bank conflicts and find
race conditions in CUDA programs at runtime.

V. CONCLUSION

In this paper, we identified performance-critical patterns
of inefficient runtime behavior on GPUs, covering memory
access and thread management scenarios. We also presented
a microbenchmark test suite with kernels reproducing each of
the corresponding behaviors. Using our test suite, we quan-
tified the performance penalty of each pattern with results
obtained on NVIDIA’s Fermi and Tesla architectures. In our
experimental evaluation, the most severe performance bottle-
necks showed up in bank conflict, memory coalescing, and
scattered host copy scenarios, indeed demonstrating significant
delays. Nevertheless, measured speedups showed that most of
the identified patterns are potential performance bottlenecks
on both architectures.

To guide future tool development when using GPU devices
through a CUDA compute engine, our microbenchmark test

suite, which we plan to publish online, can be used to evaluate
the capabilities of future tools. Given that the amount of
runtime performance data tends to become large on accelerator
devices and scheduling thousands of threads creates another
level of parallelism to be taken into account, future tools will
require not only scalable measurement and analysis techniques
but also new visualization strategies. Finally, we hope that
vendors of heterogeneous systems and tools builders will
agree on ways to exploit hardware counters for performance
analysis, a feature that so far enjoys only limited support on
GPUs.
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