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Abstract. The xns computational fluid dynamics code was successfully
running on Blue Gene/L, however, its scalability was unsatisfactory until
the first Jülich Blue Gene/L Scaling Workshop provided an opportunity
for the application developers and performance analysts to start working
together. Investigation of solver performance pin-pointed a communica-
tion bottleneck that appeared with approximately 900 processes, and
subsequent remediation allowed the application to continue scaling with
a four-fold simulation performance improvement at 4,096 processes. This
experience also validated the scalasca performance analysis toolset,
when working with a complex application at large scale, and helped
direct the development of more comprehensive analyses. Performance
properties have now been incorporated to automatically quantify point-
to-point synchronisation time and wait states in scan operations, both
of which were significant for xns on Blue Gene/L.
Keywords: performance analyses, scalability, application tuning.

1 Introduction

xns is an academic computational fluid dynamics (cfd) code for effective simu-
lations of unsteady fluid flows, including micro-structured liquids, in situations
involving significant deformations of the computational domain. Simulations
are based on finite-element techniques using stabilised formulations, unstruc-
tured three-dimensional meshes and iterative solution strategies [1]. Main and
novel areas of xns are: simulation of flows in the presence of rapidly trans-
lating or rotating boundaries, using the shear-slip mesh update method (ss-
mum); simulation of flows of micro-structured (in particular viscoelastic) liquids;
and simulation of free-surface flows, using a space-time discretisation and stag-
gered elevation-deformation-flow (edf) approach. The parallel implementation
is based on message-passing communication libraries, exploits mesh-partitioning
techniques, and is portable across a wide range of computer architectures.

The xns code, consisting of more than 32,000 lines of Fortran90 in 66 files,
uses the ewd substrate library which fully encapsulates the use of blas and

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 107–116, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



108 B.J.N. Wylie, M.Geimer, M. Nicolai, and M.Probst

communication libraries, which is another 12,000 lines of mixed Fortran and
C within 39 files. Although the mpi version of xns was already ported and
running on Blue Gene/L, scalability at that point was only acceptable up to 900
processes.

During early December of 2006, John von Neumann Institute for Comput-
ing (nic) hosted the first Jülich Blue Gene/L Scaling Workshop [2], provid-
ing selected applicants an opportunity to scale their codes on the full Jülicher
Blue Gene/L system (jubl) with local nic, ibm and Blue Gene Consortium sup-
port. jubl is configured with 8,192 dual-core 700MHz PowerPC 440 compute
nodes (each with 512MB of memory), 288 I/O nodes, and additional service and
login nodes. A pair of the xns application developers were thereby teamed with
local performance analysts to investigate and resolve the application’s scalability
bottlenecks using the analysis tools available on the system.

(a) Haemodynamic flow pressure distribution. (b) Partitioned finite-element mesh.

Fig. 1. DeBakey axial ventricular assist blood pump simulated with xns.

Performance on Blue Gene/L was studied with a test-case consisting of a 3-
dimensional space-time simulation of the MicroMed DeBakey axial ventricular
assist blood pump (shown in Figure 1). Very high resolution simulation is re-
quired to accurately predict shear-stress levels and flow stagnation areas in an
unsteady flow in such a complex geometry. The mesh for the pump consisted
of 3,714,611 elements (connecting 1,261,386 nodes) which were divided by the
metis graph partitioner into element sets which form contiguous subdomains
that are assigned to processes.

With each set of elements assigned to a single process, the nodes are then
distributed in such a way that most nodes which are interior to a subdomain are
assigned to the process which holds elements of the same subdomain. Nodes at
a subdomain boundary are assigned to all processes sharing that boundary. The
formation of element-level components of the system of equations proceeds fully
in parallel, with all data related to a given element residing in the same pro-
cess. Solution of that system of equations takes place within a gmres iterative
solver, and it is here that the bulk of inter-process communication occurs, with
the element-based structures (stiffness matrices and local residuals) interacting
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(a) Distributed vector-matrix multiplication. (b) Interface between different levels.

Fig. 2. Distributed sparse vector-matrix multiplications of global state vectors and par-
titioned matrices require data transfers taking the form of scatter and gather between
node, partition and element levels.

with node-based structures (global residuals and increments). Figure 2(a) shows
the required movement of data from element-level to node-level taking the form
of a scatter and the reverse movement from node-level to element-level taking
the form of a gather. These operations have two stages (Figure 2(b)): one lo-
cal to the subdomain (and free of communication) and another at the surface
of the subdomains (where communication is required). Four Newton-Raphson
iterations are typically carried out in the solver per simulation timestep.

Time-consuming initialisation and data checkpointing (which are also highly
variable due to file I/O) are excluded from measured performance reported
by xns in simulation time-steps per hour, originally peaking at around 130
timesteps/hour (Figure 3(a)). From comparison of simulation rates (and later
analyses) for various numbers of timesteps, it could be determined that the first
timestep’s performance was representative of that of larger numbers of timesteps,
allowing analysis to concentrate on simulations consisting of a single timestep.

2 XNS execution analysis

In addition to internal timing and reporting of the simulation timestep rate, as
charted in Figure 3(a), the xns code includes a breakdown of the performance of
its primary components, namely formation of matrix left and right hand sides,
gmres solver, matrix-vector product, gather and scatter operations, etc. From
a graph of these reported component costs, summarised in Figure 3(b), it was
clear that the primarily computational components scaled well to larger numbers
of processes, however, the gather and scatter operations used to transfer values
between the node, partition and element levels became increasingly expensive.
This behaviour is common to distributed-memory parallelisations of fixed-size
problems, where the computational work per partition diminishes while the cost



110 B.J.N. Wylie, M.Geimer, M. Nicolai, and M.Probst

128 256 512 1024 2048 4096
Processes

0

100

200

300

400

500

T
im

es
te

ps
/h

ou
r

Original
Revised

128 256 512 1024 2048 4096
Processes

1

10

100

T
im

e 
(s

ec
)

Total
Computation
Gather/Scatter

(a) Overall simulation performance. (b) Breakdown by solver component.

Fig. 3. Comparison of original and subsequently revised xns solver performance with
DeBakey axial pump on various partition sizes of jubl Blue Gene/L. (a) Originally
unacceptable large-scale performance is improved significantly to perform over 460
timesteps/hour. (b) Breakdown of the solver component costs/timestep shows good
scalability of the primarily computational components and significant improvement to
Gather/Scatter scalability (original: solid lines, revised: dashed lines).

of exchanging data across partition boundaries grows with increasing numbers
of processors. Understanding and optimising the communication, particularly at
large processor counts, is therefore essential for effective scaling.

2.1 Profile generation and analysis

Several mpi profiling tools were available on jubl, working in similar fashion
and providing broadly equivalent analyses. [3, 4] For example, after re-linking the
xns code with an instrumented library implementing the standard pmpi profiling
interface, mpi operation characteristics were accumulated for each process during
a run of the instrumented xns executable, and these profiles were collated and
presented in an analysis report upon execution completion.

From such analyses of xns, the total time in mpi communication could be
seen growing to ultimately dominate simulations, and the bulk of this time was
due to rapidly growing numbers of MPI Sendrecv operations within the core
simulation timestep/iteration loop ewdgather1i and ewdscatter2i routines.
(MPI Sendrecv provides an optimised combination of MPI Send and MPI Recv.)

Closer examination of the profile summaries showed that each process rank
makes the same number of MPI Sendrecv calls in these functions, and the asso-
ciated times are also very similar. Furthermore, message sizes vary considerably,
with some messages of zero bytes: i.e., without message data communication.
Since these operations are employed to exchange boundary elements between
partitions, they could be expected to vary from process to process, however, it
appeared that an exchange was done for every possible combination.
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Although a zero-sized point-to-point message transfer can be useful for loose
pairwise synchronisation (or coordination), it can also indicate unnecessary mes-
sage traffic when there is no actual data to transfer. Unfortunately, the available
profiling tools were unable to determine what proportion of MPI Sendrecv op-
erations consisted of zero-sized messages and their associated cost. This investi-
gation could be pursued, however, via traces of the communication routines.

In addition, the profiles showed that a considerable amount of time was
spent in calls to MPI Scan, however, to determine whether this prefix reduction
operation incurs any wait states would also require more elaborate trace analysis.

2.2 Trace collection and analysis

Several trace collection libraries and analysis tools were also available on jubl,
generally exclusively for tracing mpi operations. An early release (v0.5) of the
scalasca toolset [5] had been installed for the workshop, offering tracing of mpi

operations, application functions and user-specified annotations. Of particular
note, execution traces from each process are unified and analysed in parallel, fol-
lowing the measurement and using the same computer partition. Although it had
already demonstrated scalable trace collection and analysis of short benchmarks,
this was an opportunity to apply it to a complex application code.

The sheer number of mpi communication operations employed by xns each
timestep was itself a significant test of scalasca, quickly filling trace buffers
during measurement and requiring efficient internal event management during
analysis/replay. Trace measurement was therefore reduced to a single simulation
timestep, and analysis similarly focused to avoid the uninteresting initialisation
phase (which includes file I/O that is highly variable from run to run).

Initial scalasca tracing simply involved re-linking the xns code with a
measurement tracing library. In this configuration, without additional instru-
mentation of user functions/regions, only mpi operations were traced and subse-
quently analysed. Traces that can be completely stored in memory avoid highly
perturbative trace buffer flushing to file during measurement, and specification
of appropriately-sized trace buffers was facilitated by the memory (maximum
heap) usage reported by the profiling tools: fortunately, xns memory require-
ments diminish with increasing numbers of processes, allowing most of the avail-
able compute node memory to be used for trace buffers.

Automatic function instrumentation is a feature of the ibm xl compilers
which scalasca can use to track the call-path context of mpi operations and
measure the time spent in non-communication functions. Unfortunately, when all
functions are instrumented, measurements are often compromised by frequent
calls to small functions that have a negligible contribution on overall perfor-
mance but disproportionate impact on trace size and measurement perturbation.
When the entire xns application (including the ewd library) was instrumented
in this fashion, ten such routines were identified that produced more events than
MPI Sendrecv. These routines were then specified for exclusion from measure-
ment, resulting in traces where 94% of traced events were mpi operations (and
more than 92% were MPI Sendrecv).
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The resulting trace analysis revealed a rich call-tree, however, navigation and
analysis were encumbered by the complexity of the key nodes, often consisting of
more than twenty branches at several depths. (Only subroutine names are used to
distinguish successor call-paths, such that calls from different locations within
a routine are aggregated.) It was therefore helpful to incorporate user-region
annotation instrumentation in the xns hypo routine to distinguish initialisation,
simulation timestep and solver iteration loops, and finalisation phases.

Trace measurement and analysis of the instrumented original xns code for a
single simulation timestep at a range of scales confirmed the analysis provided by
the mpi profilers. With 2,048 processes, the main xns simulation timestep loop
was dilated by 15% during trace collection (compared to the uninstrumented ver-
sion), producing over 23,000 million traced events which were then automatically
analysed in 18 minutes.

Figure 5 (back) shows how the scalasca analysis report explorer high-
lit the most time-consuming call-paths to the MPI Sendrecv operations in the
ewdscatter2 and ewdgather1 routines of the timestep loop and presented the
individual process times with the hardware topology of BlueGene/L: mpi com-
munication times were very balanced across processes, as evident from the 3.4%
variation and uniform colouring.

As message size is logged as an attribute with each message in the trace,
the number of zero-sized messages could also be determined and was found
to grow rapidly with the number of processes employed (where partitions are
correspondingly smaller and have fewer connections).

scalasca trace analysis was therefore customised to generate a report of the
number of bytes received and receiving times for each sender/receiver combina-
tion and communication distribution maps were produced (e.g., Figure 4(a)).
This analysis for 1,024 processes revealed that 96% of pairs had no data to
exchange, and the trend makes this progressively worse for larger process con-
figurations. Statistical analysis of the transfer data for non-zero-sized messages
(Figure 4(b)) determined that on average each receiver rank takes 1.49 seconds
to receive 9.6MB in 27,000 messages from 42 separate senders, however, there
is a huge variation with maximal values typically three times the mean and 25
seconds receiving time for the rank that takes the longest.

Initial scalasca analyses didn’t distinguish communication and synchroni-
sation times for point-to-point messages, reporting only Point-to-point commu-

nication time. Incorporating a new metric for (pure) Point-to-point synchroni-

sation time, for sends and receives of zero-sized messages, quantifies the very
significant cost of these potentially redundant operations (Figure 5 (back)). For
individual sends and receives, this was straightforward, however, the dual-nature
of MPI Sendrecv provides cases where only one of its send and receive parts are
zero-sized and it is not possible to separate the respective costs of each part
without mpi internal events [6]. After experimentation with various alternatives,
it was found that only situations where the bytes sent and received are both
zero could be reliably accounted as Point-to-point synchronisation time. Even
though this underestimates the actual synchronisation cost, it ensures that the
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(a) Communication time map (b) Receiver statistics

Fig. 4. Message analysis by sender/receiver for ewdscatter with 1,024 mpi processes.
(a) The map is a matrix of message transfer times for each sender/receiver combina-
tion, coloured with a logarithmic scale: white implies no message transfer. (b) Message
statistics aggregated per receiver for number of senders, messages, bytes transfered and
receiving times (and then sorted by total value) highlight the considerable variation.

associated communication cost remains consistent when redundant zero-sized
operations are eliminated.

Furthermore, the solver time-step loop requires around 1,500 seconds of Col-

lective communication time, 53% of which is due to 11 global MPI Scan opera-
tions, and almost all of it (789s) is isolated to a single MPI Scan in updateien.
Quantifying the time a scan operation on process rank n had to wait before all
of its communication partners (ranks 0, . . . , n−1) also entered the MPI Scan,
another extension to the trace analysis was the implementation of a new Early

Scan pattern. As seen in Figure 5, the aggregate Early Scan time is negligible
for xns, indicating that each MPI Scan is called when the processes are well bal-
anced. Further investigation of the traces determined that no rank ever exited
the MPI Scan before all had entered, and this generally results in longer waits for
lower process ranks. Such a collective synchronisation on exit appears to be an
unnecessary artifact of the mpi implementation on Blue Gene/L. While it would
be desirable to define a Scan Completion pattern just for the cost of delayed
exits from MPI Scan, this requires a measure of the local scan processing time,
which could only be estimated in the absence of explicit mpi internal events (e.g.,
via extensions to [6]). For impacted applications various remedies could be pur-
sued: the entire mpi library or simply the implementation of MPI Scan could be
exchanged, or the application could try to adapt to the behaviour of the library
MPI Scan by redistributing or rescheduling parts of its preceding computation
accordingly.
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Fig. 5. scalasca performance analysis reports for original (back) and revised (front)
versions of the xns simulation on jubl Blue Gene/L with 2,048 processes. A metric cho-
sen from the metrics hierarchy (left panes) is shown for call-paths of the solver time-step
loop (central panes) and its distribution per process for the selected ewdscatter2 bot-
tleneck (right panes): navigation to the most significant metric values is aided by boxes
colour-coded according to each pane’s specified mode and range scale (bottom). In each
tree, collapsed nodes present inclusive metrics while expanded nodes present exclusive
metrics. 47,352s of Point-to-point synchronization time (45.8% in ewdscatter2 and
43.5% in ewdgather1) is reduced to only 742s (in routines which were not modified)
by switching from MPI Sendrecv to separate MPI Send and MPI Recv operations where
zero-sized transfers are eliminated. Point-to-point communication time, particularly
Late Sender situations, and Wait at Barrier are both significantly increased due to
resulting communication load imbalance, manifest in the variation by process rank,
however, overall communication time is substantially improved in the solver.



Performance analysis and tuning of XNS on BG/L 115

3 Modification of ewdgather and ewdscatter

The insights provided by the preceding analyses of xns suggested splitting the
MPI Sendrecv operations used within the ewdgather1 and ewdscatter2 rou-
tines into separate MPI Send and MPI Recv operations which are only called
when actual message data needs to be transfered. Since a static partitioning
of the mesh is employed, the number of elements linking each partition is also
known in advance (by potential senders and receivers), and when there are no
links there is no data to transfer.

The graph comparing original and revised xns simulation timestep rates in
Figure 3(a) shows that below 1,024 processes, elimination of these zero-sized
messages had little effect on the performance, which could be expected since
the communication matrix remains relatively dense at this scale. Performance
improved dramatically for larger configurations though, resulting in a more than
four-fold overall performance improvement with 4,096 processes to over 460
timesteps/hour. Further scalability is also promising, however, lack of suitably
partitioned datasets for larger numbers of processes has unfortunately prevented
pursuing this investigation to date.

Elimination of zero-sized messages reduced the size of trace files collected
from the new version and similarly improved trace analysis performance. Com-
paring analyses from the original and modified versions (Figure 5) shows the
significant improvement in mpi communication time and the contributions from
ewdgather1 and ewdscatter2. Point-to-point synchronisation time decreased
more than 98%, for a substantial overall performance improvement, however,
the new versions of these functions show significant imbalance by process. This
manifests in increased time in other parts of the solver, particularly Wait at Bar-

rier and Late Sender situations for Point-to-point communication (i.e., where
the receiver was blocked waiting for a sender to initiate a message transfer).

Further modifications of xns to use asynchronous (non-blocking) message
transfers within ewdscatter2 and ewdgather1 were investigated, but showed
no additional performance improvement. This may be due to the small amount
of computation available for overlap with communication within these routines.
Although there is potentially more computation in the rest of the iteration loop,
Figure 3(b) shows that it diminishes rapidly as the number of processes increase.

4 Conclusion

The first Jülich BlueGene/L Scaling Workshop was a catalyst for successful
collaborations between application and analysis tools developers. Analysis of
the execution performance of the xns application with more than one thousand
processes was crucial in the location of adverse characteristics that developed at
scale in some critical communication routines. Straightforward modification of
these routines significantly improved xns simulation performance, and enabled
scaling to processor configurations four times larger than previously practical.

Further optimisations with potentially significant performance benefits are
currently being evaluated, such as improved mesh partitioning and mapping
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of mesh partitions onto the Blue Gene/L topology. Communication distribution
maps summarising message transfers between sender/receiver combinations will
be important for this purpose, and provision of these by the scalasca toolset
is being investigated.

While the scalasca toolset demonstrated that it could automatically quan-
tify and help isolate common performance problems in large-scale complex appli-
cations, various aspects could be identified for improvement. Automated trace
analysis was subsequently extended to quantify inefficiencies in MPI Scan and
MPI Sendrecv, the latter being found to be responsible for costly and unneces-
sary point-to-point synchronisations. Synchronisation and communication costs
are currently based on heuristics that ensure analysis consistency, yet which
might be determined more accurately in future.

The profiling tools available on Blue Gene/L were a convenient starting point
for performance analysis, however, they provided limited insight into synchroni-
sation costs and imbalance. Message statistics for communication and synchro-
nisation operations can be calculated from trace analysis or accumulated during
measurement, and these capabilities are now being incorporated in the scalasca

toolset. By integrating runtime summarisation and tracing capabilities, conve-
nience of use is being pursued particularly for measurement configuration and
selective event tracing.

The open-source scalasca toolset is freely available for download [7].
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