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SUMMARY

High-performance computing systems continue to employ more and more processor cores. Current typical
high-end machines in industry, university, and government research laboratory computing centers feature
thousands of computing cores. While these machines promise ever more compute power and memory
capacity to tackle today’s complex simulation problems, they force application developers to greatly
enhance the scalability of their codes to be able to exploit it. To better support them in their porting
and tuning process, many parallel-tools research groups have already started to work on scaling their
methods, techniques, and tools to extreme processor counts. In this paper, we survey existing profiling and
tracing tools, report on our experience in using them in extreme scaling environments, review working
and promising new methods and techniques, and discuss strategies for solving open issues and problems.
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INTRODUCTION AND MOTIVATION

The number of processor cores available in high-performance computing systems is steadily
increasing, and a major factor is the current trend to use multi-core and many-core processor chip
architectures as compute nodes in large configurations. Since June 2009, the Jugene IBM Blue
Gene/P in Jülich Supercomputing Centre comprising 72 racks each with 1024 quad-core PowerPC
processors—294 912 (288 k) cores in total—has been efficiently running a diverse workload of
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highly parallel applications [1]. While uniquely providing more than 256 k cores, an additional 4
systems from Cray and IBM offer more than 128 k cores, and the average number of cores per
system in the November 2009 Top500 list is over 9300 [2].
Ever-increasing compute power and memory capacity available to tackle today’s complex simu-

lation problems forces application developers to greatly enhance the scalability of their codes to
be able to exploit it. This often requires new algorithms, methods or parallelization schemes as
many well-known and accepted techniques stop working at such large scales. It starts with simple
things such as opening a file per process to save checkpoint information, or collecting simulation
results of the whole program via a gather operation on a single process, or previously unimpor-
tant order O(n2)-type operations that now quickly dominate the execution. Unfortunately, many of
these performance problems only show up when executing with very high numbers of processes
and often cannot be easily diagnosed or predicted from measurements at lower scales. Detecting
and diagnosing these performance and scalability bottlenecks requires sophisticated performance
instrumentation, measurement, and analysis tools. Simple tools typically scale very well but the
information they provide proves to be less and less useful at higher scales. Clearly, understanding
performance and correctness problems of applications requires running, analyzing, and gaining
insight into these issues at the largest scale.
Consequently, a strategy for software development tools for extreme-scale systems must address

a number of dimensions. First, the strategy must include elements that directly address extremely
large task and thread counts. Such a strategy is likely to use mechanisms that reduce the number
of tasks or threads that must be monitored. Second, less clear but equally daunting, is the fact that
several current systems are composed of heterogeneous computing devices and more are being
planned. Performance and correctness tools for these systems are currently very immature. Third,
the strategy requires a scalable and modular infrastructure that allows rapid creation of new tools
that respond to the unique needs that may arise as extreme-scale systems evolve. Furthermore, a
successful tools strategy must enable productive use of systems that are by definition unique. Thus,
it must provide the full range of traditional software development tools including debuggers and
other code correctness tools such as memory analyzers, performance analysis tools as well as build
environments for complex codes that rely on a diverse and rapidly changing set of support libraries.
Many parallel-tools research groups have been working for several years on scaling their methods,

techniques, and tools to extreme processor counts. In 2007 we investigated performance measure-
ment and analysis tools for large-scale systems, and evaluated those installed on the predecessor
capability computing system at JSC—the Jubl IBM Blue Gene/L with 16 384 cores. In this paper,
we survey the profiling and tracing tools, and report on their use in extreme scaling environments,
including our own experience with the JSC Blue Gene/L and Blue Gene/P systems. We also review
established and emerging methods and techniques, and discuss strategies for solving open issues
and problems.

SCALABLE PROFILING APPROACHES

Profiling tools aggregate metrics collected during the execution of a program. By summarizing
the events influencing the performance of a program instead of recording every event instance
separately (as done when tracing), the amount of data collected remains constant—independent
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of the runtime of the observed program. Therefore, profiling tools can also be used for very long
running programs working on realistic input data sets and models. The amount of data can also be
controlled by selecting for what kind of program objects data is collected, e.g. for which functions,
function call-sites, basic blocks, or statements. Similarly, for parallel programs, data can be collected
for each thread or process or can be aggregated over the nodes or even the whole machine. So in
the context of extremely scalable machines, profiling has the advantage that by choosing the right
aggregation levels, profiling can be made to work for very large programs on many processors.
However, it is clear that the more measurements are aggregated, the higher the risk that important
details of performance problems to be identified are obscured.
In the following, we give an overview of profiling tools and frameworks which were known to

work on at least 8000 processors and describe the tradeoff decisions governing their design.

MPI-only profiling libraries

MPI is the predominant parallel programming model used in scientific computing which is demon-
strated to work on the largest computer systems available. With PMPI, there exists a standardized,
and therefore portable, MPI monitoring interface. The simplest performance tool is a collection of
wrapper routines that collect profile data for each MPI call. At the end of the program execution,
e.g. during MPI Finalize, the collected data is potentially aggregated across all processes using
MPI communication and then written to disk. Data on user defined routines is ignored in this case,
which has the big advantage that for the measurement the user application only has to be re-linked
against the PMPI wrapper library.
FPMPI-2 is a portable, open-source, very light-weight, and scalable MPI profiling library from

Argonne National Laboratory [3]. For each MPI function, it provides the average and the maximum
of the sum of metrics over all processes in a single textual output file. The provided metrics are
the number of calls and the total execution time of each MPI function. FPMPI-2 has two special
features that set it apart from other MPI profiling libraries. First, for communication functions
it also records not only the amount of data transferred but also the distribution of the message
sizes (by using an adaptive 32 bins histogram). Second, it optionally tries to determine the actual
synchronization time within blocking MPI calls by replacing the actual MPI implementation with a
logically equivalent implementation using busy-wait on the user level, allowing the blocking time
to be estimated. The largest experiment known to us so far is a 16 384-process run. Figure 1 shows
an extract of the output report of a 8192-process run on the Jubl Blue Gene/L system analyzing
the ASC SMG2000 benchmark [4].
mpiP is also a portable, scalable MPI profiling library originating from Lawrence Livermore

National Laboratory but meanwhile maintained as an open-source project on sourceforge.net [5].
It profiles a larger set of MPI routines than FPMPI-2, and also provides the number of calls, total
execution time, bytes sent for each MPI function, and optionally for each MPI call-site. Captured
call-paths are determined by a user-specified traceback level. Also, it provides MPI file I/O statistics
where applicable. The collected data is not aggregated across the processes but is collected in a
scalable manner into one single output file that contains the complete data for all processes. Figure 2
shows a small portion of the measurement output of an ASC SMG2000 benchmark run on 8192
processes on the Jubl Blue Gene/L. The complete file consists of 295 075 lines (about 22MByte).
A separate mpiPView GUI is provided to display and facilitate navigation in mpiP profile data.
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Figure 1. FPMPI-2 measurement output of an ASC SMG2000 benchmark run with 8k processes on a Blue
Gene/L system. The times given are the times to perform the operation. Average times, minimum, and maximum
refer to all processes. Amount of data is computed in bytes. For synchronizing collective operations, the average,
min, and max time spent synchronizing is shown next. Calls by message size show the fraction of calls that
sent messages of a particular size. Each bin is represented by a single digit, representing the tens of percent of
messages within this bin. A ‘0’ represents precisely zero, a ‘.’ (period) represents non-zero but less than 10%,
and ‘*’ represents 100%. Messages by message size show similar information, but for the total message size

(with similar intermediate lines elided).
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Figure 2. mpiP measurement output of an ASC SMG2000 benchmark run with 8 k processes on a Blue Gene/L
system, showing the basic structure of the reported data. A ‘*’ represents all 8192 ranks and ‘...’ indicates
similar lines elided for the ranks from 1 to 8190. The call-site time and message statistics have a line for every

MPI function call site and rank (only one of which is shown here).
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The largest reported experiment we are aware of is a 65 536 processor run on the LLNL Blue
Gene/L analyzing the Qbox molecular dynamics code [6].
Finally, the MPI profiling library of the IBM High-Performance Computing Toolkit (HPCT) [7]

available from the IBM Advanced Computing Technology Center for IBM customers uses yet
another approach for minimizing the amount of data given to the user for extreme scaling experi-
ments. The usual data is collected for each MPI call (and again optionally for each MPI call site
via a user-specified traceback level) and process, but only the processes with the MPI rank zero
and with the ranks representing the minimum, maximum, and average total MPI execution time are
written to file. Figure 3 shows an extract of such a report produced by an SMG2000 measurement
of 8192 processes on the Jubl Blue Gene/L.

TAU profiling

The TAU framework [8,9] from the University of Oregon is a very versatile and portable tool set
for the performance analysis of parallel multi-threaded applications. Its components support the
measurement of profiling and tracing data based on the same integrated set of program instrumen-
tation facilities. Collected data includes a wide variety of metrics including time, hardware counter
values, and memory usage. The large set of instrumentation facilities provide source and object code
as well as static and dynamic instrumentation for many languages (among them C, C++, Fortran,
Java, Python), threading models (e.g. pthreads, Java, Win32, OpenMP) and message passing (MPI,
SHMEM). For profiling, it supports flat, call-path, and incremental profiles.
Profiles are collected and stored on a per-thread basis. After the measurement, the profile data

is usually loaded in a profile experiment database called PerfDMF [10]. The use of a database not
only allows performing a wide range of analyses of the collected profile data but also comparisons
between experiments. Aggregation happens on-the-fly while processing the analysis queries. The
database and special 3D triangle mesh, scatter, and bar plots ensure the scalability of the performance
analysis. Because of the widespread use of TAU at open and restricted computer sites, it is not clear
how large the largest successful profiling experiment with TAU was, but it was certainly 64 000
processors or more. Figure 4 shows a 3D bar plot of a measurement of the Miranda code executed
with 16 384 processes on a Blue Gene/L system [11].

Scalasca profiling

The Scalasca toolset [12,13] from Jülich Supercomputing Centre is a performance-analysis tool
that has been specifically designed for use on large-scale systems including Blue Gene and Cray
XT. Scalasca integrates both profiling and tracing in a stepwise performance diagnosis process,
adopting a strategy of successively refined measurement configurations. The current version of
Scalasca can be applied to MPI and OpenMP programs written in C/C++ and Fortran.
Compared to its predecessor KOJAK [14,15], Scalasca includes a call-path profiling component

and uses a parallel and therefore more scalable approach to analyzing event traces. The current
version takes full call-path profiles of MPI and user functions, as well as OpenMP parallel regions,
and incremental profiling is supported in a prototype version. The metrics provided include wall-
clock time, message counts, bytes communicated, and optionally hardware counters. On most
systems, including Blue Gene, the instrumentation of user functions is performed completely
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Figure 3. HPCT mpitrace measurement output of an ASC SMG2000 benchmark run with 8 k processes on a
Blue Gene/L system, showing the basic structure of the reported data. ‘...’ indicates similar lines elided for
intermediate message sizes and tasks. Only the report for rank zero includes the communication summary at the
bottom, whereas the reports for the ranks with minimum/median/maximum communication times only include

the MPI profile output at the top.

automatically by the compiler; on other systems a mix of manual and automatic instrumentation
mechanisms is offered.
To avoid inefficient use of the file system, the Scalasca profiler emits only a single report file at the

end of the run, which is collated in parallel using MPI collective operations. For the same reason, the
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Figure 4. TAU 3D bar plot of a measurement of the Miranda code executed with 16 k processes on a Blue
Gene/L system. A metric (here Exclusive Time) is plotted for all threads (axis on the right) and all monitored
functions (axis on the left). The color coding could be used to represent another metric; in the picture above it

is also showing Exclusive Time. A 3D cursor can be used to inquire values of conspicuous metrics.

necessary unification of local identifiers used to denote program objects such as regions or call-paths
is also done with MPI. The profiles are stored as a three-dimensional array with the dimensions
metric, call-path, and process. Motivated by the need to analyze the performance behavior on
different levels of granularity, each dimension is organized in a hierarchy. The profiles can be viewed
in a flexible browser that uses coupled tree widgets to navigate through the hierarchical performance
space. To facilitate the analysis of runs on thousands of processors, the browser provides a scalable
two- or three-dimensional Cartesian grid display to visualize physical or virtual process topologies.

Cray tools profiling

The Cray performance analysis tools [16] provide an integrated infrastructure for measurement
and analysis of computation, communication, I/O, and memory utilization. CrayPat Performance
Collector is the data capture tool and Cray Apprentice2 Performance Analyzer is a post-processing
data visualization tool that is used to explore and study the captured data. Data collection is supported
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via external sampling and internal code instrumentation mechanisms. The toolset allows data to be
recorded either as a summation of events over time (profile), or as a sequence of events over time
(trace files). By using a drill-down approach, the combination of these mechanisms allows the Cray
performance analysis tools to work at large scale. Automatic Profiling Analysis collects performance
data from a running application using sampling, analyzes the data, and identifies the important
areas for automatic code instrumentation with the pat build utility. The Cray performance analysis
tools have been used regularly at large scales on high-end Cray XT systems with more than 30 000
processors. One of the main focuses of the analysis engine is detecting possible scalability problems
via load balance analysis [17], MPI synchronization time analysis, combined with profile-guided
MPI rank placement suggestions.

SCALABLE TRACING APPROACHES

Whereas the strength of profiling lies in the compactness of the resulting data sets and the robustness
of related tools, event tracing allows the in-depth study of parallel program execution behavior.
Tracing is especially effective for observing the interactions between different processes or threads
that occur during communication or synchronization operations and to analyze the way concurrent
activities influence each other’s performance.When an application execution is traced, performance-
relevant events, such as entering functions or sendingmessages, are recorded at runtime and analyzed
postmortem to identify potential performance problems.
Traditionally, developers of parallel programs use event traces to visualize the program behavior

along the time axis in the style of a Gantt chart, where local activities are represented as boxes
with a distinct color (Figures 5 and 6). Interactions between processes can be highlighted by
drawing arrows or polygons to illustrate the exchange of messages or the involvement in a collective
operation, respectively (not shown). Alternatively, event traces can be analyzed automatically by
scanning them for characteristic patterns and extracting features of interest.
While event tracing enables the investigation of performance problems at a high level of detail,

growing trace-file size often constrains its scalability and complicates management, analysis, and
visualization of trace data. Users of tracing tools typically confront problems, such as massive
storage requirements during trace generation and in-memory analysis, program perturbation when
flushing event buffers to disk at runtime, limited I/O bandwidth when accessing trace files on disk,
and failure, extended response times, and insufficient resolution of graphical displays.
The reasons for large traces can be roughly divided into three categories: (i) large numbers of

processes or threads (trace width), (ii) high event frequencies in combination with long execution
intervals to cover (trace length), and (iii) number of metrics recorded per event (trace depth). Below,
we survey current approaches to handle large traces and classify them according to the primary
issues they address and the primary benefits they offer.

Methods and approaches for scalable tracing

To allow for efficient zooming and scrolling of timeline visualizations, methods are needed to
efficiently access trace data from files. The Jumpshot [18] trace browser from Argonne National
Laboratory facilitates the scalable visualization of long traces by dividing the trace file into frames
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Figure 5. Paraver timeline plots of a measurement of the High-Performance Linpack run executed on Barcelona
Supercomputing Center’s MareNostrum machine. The x-axis covers all 1700 s of the execution while the y-axis
shows all of the 10 000 processors used. Zooming in on any rectangular subregion of the plot allows analyzing
the measured data in a flexible yet scalable way. The color encodes the value of a selected metric (left: L1

Cache Misses, right: Useful Duration of DGEMM) over time.

representing intervals that can be separately loaded and analyzed [19]. In this way, the time needed
and the amount of memory required to load and display a given interval from a trace file in
Jumpshot’s native SLOG format depend only on the number of graphical objects to be displayed.
The visual performance can be further improved by arranging drawable objects into a binary tree
of bounding boxes, which provides better support for drawing coarse-grained previews [20]. After
the desired interval has been loaded, the user can unclutter the timeline visualization by letting
Jumpshot replace larger sets of related message arrows with summary arrows.
The Paraver [21] trace-browser framework from Barcelona Supercomputing Center employs

a variety of scalability-enhancing techniques [22], covering all steps of the trace analysis from
instrumentation through post-processing to visualization. To reduce trace-file size, Paraver uses
a system of filters that stepwise transform larger traces into smaller ones both by eliminating
dispensable features as well as by summarizing unnecessary details using a mechanism they call
soft counters. A key method in this context is the automatic extraction of structural properties
using signal processing techniques [23]. To avoid long traces in the first place, Paraver can skip
the recording of repetitive behavior based on a dynamic periodicity detection algorithm [24]. This
is applied locally and therefore assumes structural similarities between concurrent control flows,
which is why this technique has so far been applied only to OpenMP applications. Finally, in contrast
to other trace browsers, Paraver uses the same compressing, zooming, and panning facilities in the
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Figure 6. Vampir timeline display of a measurement of the ASC sPPM benchmark executed with 1792 processes
on a Blue Gene/L. The thumbnail pane on the right of the window gives a rough approximation of the complete
measurement. The main pane in the left shows the currently selected portion (which is indicated by a black

rectangle in the overview thumbnail).

processor (vertical) axis as for the time (horizontal) axis. Other browsers use a simple scrollbar
for this purpose, allowing only a subset of the processes to be shown and examined at a time
and making it difficult to obtain an overview of the global state. This makes Paraver’s timeline
visualization much more scalable for very large number of processors. For example, Figure 5
shows the complete timeline plot of a High-Performance Linpack run on 10 000 processors of the
MareNostrum machine [25], from which the broad patterns of execution are still distinguishable.
Likewise, the scalability of theVampir [26] trace browser from TUDresden has been enhanced in

several ways. The current version, called VampirServer [27,28], is based on the principle of keeping
performance data close to the location where they were created and of exploiting distributed memory
for the analysis. It consists of a parallel analysis server and a potentially remote visualization client.
The server is submitted postmortem as a separate parallel job usually on the machine where the
trace data were created, while the client runs on the user workstation and interacts with the server
via the network. A screenshot of the client display in Figure 6 shows a subsection of the timeline of
a 1792 processor measurement of the ASC sPPM benchmark on a Blue Gene/L system. Moreover,
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unlike common linear storage schemes for event data, a tree-based main memory data structure
called compressed Complete Call Graph (cCCG) [29] allows potentially lossy compression of long
traces while observing specified deviation bounds.
Another approach for trace compression has been developed in the ScalaTrace project [30],

which applies section descriptors to perform both intra-node and inter-node compression, thus
addressing long as well as wide traces. For some applications, their original scheme, which does
not support timestamped events, reduces traces to near constant size independent of the number of
nodes. A more recent extension aims at retaining the relative distance of events at least to some
degree by introducing delta-time histograms [31].

Scalasca tracing

In message-passing (i.e. MPI) applications, a significant fraction of the time spent in communication
and synchronization routines can often be attributed to wait states that occur when processes fail
to reach implicit or explicit synchronization points in a timely manner, for example, as a result of
unevenly distributed workloads. Because wait states cause temporal displacements between program
events occurring on different processes, they can be identified by automatically searching event
traces for corresponding patterns [14,15]. In addition to being usually faster than a manual analysis
using a trace browser, this approach is also guaranteed to cover the entire event trace and not to
miss any instances.
To accomplish the search is a scalable way, Scalasca exploits both distributed memory and

parallel processing capabilities available on the target system. Instead of sequentially analyzing
a single global trace file, as KOJAK does, Scalasca analyzes separate process-local trace files in
parallel by replaying the original communication on as many CPUs as have been used to execute
the target application itself. During the search process, Scalasca classifies detected pattern instances
by category and quantifies their significance for every program phase and system resource involved.
Since trace processing capabilities (i.e. processors and memory) grow proportionally with the
number of application processes, the Scalasca analysis replay has achieved good scalability even
at previously intractable scales. Additionally, to allow accurate trace analyses on systems without
globally synchronized clocks, the trace analyzer provides the ability to synchronize inaccurate
timestamps postmortem using the same scalable replay mechanism [32].

EXPERIMENTAL RESULTS

ASC benchmark SMG2000 [4] is a semi-coarsening multi-grid solver which is known to scale
well on Blue Gene/L (in weak scaling mode where the problem size per process is constant) but
pose considerable demands on MPI performance analysis tools due to huge amounts of non-local
communication [33]. It therefore provides a challenge for comparing performance tools operating
at large scales.
Figure 7 summarizes measurements with a selection of the performance analysis tools available

in mid-2007 that we were able to apply to the ASC SMG2000 benchmark with 8192 processes on
the Jubl Blue Gene/L. The first bar (marked ‘uninst’) is the execution time of the uninstrumented
optimized application, which is used as a reference in determining instrumentation and measurement
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Figure 7. Measurement and analysis times for the ASC SMG2000 benchmark execution with 8192 processes on
Blue Gene/L using a selection of tools. Measured executions take longer than the uninstrumented execution, due
to the dilation effect of instrumentation and measurement during application execution combined with additional

analysis and reporting time at completion.

dilation. The next three bars are for measurements taken with the three MPI profiling libraries—
FPMPI-2, mpiP and HPCT— and show only small differences in measurement and reporting time,
with dilation of the application execution (prior to finalization) starting at around 10%. Notably,
mpiP could only be run without callstack traceback, due to excessive memory requirements during
final report collation with more than 1024 processes, and FPMPI-2 had the same limit on providing
point-to-point message distance information as part of its report.
The TAU profiler supports a large variety of measurements configurations, and along with the

default cell-path profile measurement configuration a second one employing measurement throttling
was also used. Throttling reduces measurement overhead by dynamically disabling measurements
for frequently executed functions such as MPI Isend and MPI Irecv. Final reporting produces
a separate profile file for each of the 8192 processes, and these must be unified and collated during
analysis presentation. Unfortunately, our Blue Gene/L p720 frontend had insufficient memory to
be able to load all of these files, however, subsets could be examined.
Scalasca measurement collection and analysis (marked ‘scan’) was also performed in several

configurations, all using the same executable prepared with automatic function instrumentation
along with an instrumented MPI library. The initial default measurement produced a complete
runtime summarization profile with 3084 distinct call-paths, from which a filter was created listing
some 32 frequently executed functions that were not found on MPI call-paths. Subsequent measure-
ment times with this filter were thereby reduced both by fewer measurements being taken and only
580 call-paths remaining in the summary report, considerably reducing the time to unify the set of
call-path definitions and collate the corresponding profile report. Measurement dilation was reduced
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below 50%, and although this is more than that of the pure MPI profiling libraries, it reflects the
additional call-path information and timing of user functions.
Using this filter during trace collection (‘scan -t’) also reduced per-process trace sizes, allowing

them to be stored entirely in memory and avoiding highly disruptive intermediate flushes to disk.
Along with definition unification (98 s) and call-path profile collation (46 s), as for pure summariza-
tion, additional time is required for trace handling (453 s) and event replay (109 s) during parallel
trace analysis to produce the final call-path profile augmented with inefficiency metrics.
The different tools tested are seen to provide increasingly detailed analysis of the parallel applica-

tion execution performance on a corresponding scale of cost. While the simplest MPI profiling tools
report a large proportion of time in MPI Wait operations, more comprehensive tools identify which
of the various MPI Wait call-sites or call-paths are responsible, and which of the processes are
affected by the highly imbalanced execution behavior. Further analysis can distinguish potentially
avoidable waiting time from the necessary communication and synchronization times to isolate the
performance problems which are most amenable to remediation.

Experience with Scalasca

Scalasca trace collection and analysis scalability has been improved as inefficiencies were identified
and addressed. Replay-based parallel trace analysis, able to exploit per-process event traces without
merging or rewriting them, is one approach for scalable trace analysis. It has been complemented
with a runtime summarization capability sharing the infrastructure for online unification of definition
identifiers and collation of per-process analysis reports, that provides a more convenient starting
point for general analysis fromwhich trace analysis can be targeted effectively. Reducing the number
of files written when tracing to a single file per process (plus two global files for a set of unique
object definitions referenced by event records and for identifier mapping tables), which is written
only once directly into a dedicated experiment archive, has also been necessary. Since filesystem
performance is expected to continue to lag behind that of computer systems in general, even when
parallel I/O is employed, elimination of unnecessary files provides benefits that grow with scale
and are well-suited for the future.
As a specific example, SMG2000 using 65 536 processes on the Jugene Blue Gene/P was

analyzed with the 1.0 (June 2008) release version of Scalasca. The uninstrumented version of the
application ran in 17min, including 12min to launch this number of processes. From an initial
runtime summary of the fully instrumented application, where execution time was dilated by 25%
to 6min, a file listing a number of purely computational functions to be filtered from the trace
was determined. Collection and analysis of the resulting 3.33 TB trace took 100min (two-thirds
collection and one-third analysis), including 30min for the two launches. Unifying identifier defi-
nitions and writing associated maps took 12min, whereas writing the traces in parallel to GPFS
achieved 6.2GB/s and took 10min, saturating the available transfer bandwidth. The major bottle-
neck, however, was the 25min required to initially open and create one trace file per process. The
solver section of the resulting 2.3GB analysis report was subsequently extracted, and Figure 8
shows the distribution of the Late Sender metric for the call-path taking the longest time. With its
50% standard deviation there is clearly a significant imbalance that closely corresponds to the phys-
ical racks of the Blue Gene/P system. Furthermore, only 0.2% of the total number of late senders
are on this call-path that requires one-third of the total Late Sender time, so there is potentially a
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Figure 8. Scalasca analysis report explorer presentation of the solver extract of the trace analysis report for a
64k-process measurement of SMG2000 on a 16-rack Blue Gene/P, with Late Sender time selected from the
metrics pane (left) amounting to 43% of total time (compared to 42% for Execution time excluding MPI).
One third of Late Sender time is attributed to one MPI Waitall from the call-tree pane (centre), and its
distribution across the 65 536 processes shown on the Blue Gene physical topology (right). Metric values are
colour-coded according to the scale at the bottom of the window to facilitate distinction of high (dark) and low

(light) severities in both tree and topology displays.

great benefit from addressing this localized inefficiency, e.g. using a better mapping of processes
to processors.
Beyond relatively simple benchmark kernels, Scalasca has also successfully been used to analyze

and tune a number of locally important applications. The XNS simulation of flow inside a blood
pump, based on finite-element mesh techniques, was analyzed using 4096 processes on Blue
Gene/L, and after removing unnecessary synchronizations from critical scatter/gather and scan
operations performance improved more than four-fold [34,35]. On the MareNostrum blade cluster,
theWRF2weather research and forecasting code was analyzed using 2048 processes, and occasional
problems with seriously imbalanced exits from MPI Allreduce calls that significantly degraded
overall application performance were identified [36,37]. In both cases, the high-level call-path
profile readily available from runtime summarization was key in identifying general performance
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issues that manifest at large scale, related to performance problems that could subsequently be
isolated and understood with targeted trace collection and analysis.

CONCLUSION

In this paper we gave an overview of scalable profiling and tracing tools for today’s extreme-scale
computing systems. It shows that the main driving force in this area is an open community of
tool developers at universities and government research laboratories. While IBM and Cray are still
developing and providing tools for very large-scale supercomputers with funding from the U.S.
HPCS program, it is not yet clear whether this is adequate to support the wider community of HPC
users and systems.
Although it is difficult to directly compare the robustness and usability of research tools with

commercial products, many of them reached a level where they can be effectively used to analyze
‘real-world’ applications on today’s large machines. However, it is unclear whether this can be
sustained in the future. It is hard to acquire the necessary access and amount of computing time
necessary to test and optimize the tools on large numbers of processors. Complicating the situation
is the fact that tool developers only get access to new machines at the same time as application
developers, so the tools are not ported to or tuned for the new architecture when the application
programmers need them most. Simpler tools are more readily ported to new systems than those
requiring more demanding system functionality, e.g. Rice University HPCToolkit could not be
included when we performed our evaluation in 2007 as the patched operating system kernels it
requires for Blue Gene and Cray XT first became available in 2009 [38]. In comparison, first
measurements in 2009 of hybrid OpenMP/MPI application executions on Cray XT5 systems and
with 294 912 MPI processes on the JSC Blue Gene/P system Jugene have demonstrated both
runtime summarization and automated trace analysis with the Scalasca toolset at an unprecedented
scale [13,39].
However, providing more scalable tools is only half the solution. Equally important will be tools

that can handle the heterogeneity of future systems exploiting accelerator hardware in various forms.
Finally, performancemeasurement and analysis tools need to be complemented with equally scalable
debuggers and other code correctness tools such as memory analyzers, to provide a comprehensive
software development environment for today’s and future complex application codes.
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