
COLLABORATIVE INTERACTIVITY IN
PARALLEL HPC APPLICATIONS

Interactive Computational Steering of Grid Applications

M. Riedel1, W. Frings1, Th.Eickermann1, S. Habbinga1, P. Gibbon1,
A. Streit1, Felix Wolf1,2, Th. Lippert1
1 Forschungszentrum Jülich, Jülich Supercomputing Centre, 52425 Jülich, Germany
2 RWTH Aachen University, Department of Computer Science, 52056 Aachen, Germany

Abstract Large-scale scientific research often relies on the collaborative use of massive
computational power, fast networks, and large storage capacities provided by
e-science infrastructures (e.g. deisa, egee, etc.) since the past several years.
Especially within e-science infrastructures driven by high-performance comput-
ing (hpc) such as deisa, collaborative online visualization and computational
steering (covs) has become an important technique to enable hpc applications
with interactivity and visualized feedback mechanisms. In earlier work we have
shown a prototype covs technique implementation based on the visualization
interface toolkit (visit) and the Grid middleware of deisa named as Uniform
Interface to Computing Resources (unicore). Since then the approach grew
to a broader covs framework. More recently, we investigated the impact of
using the computational steering capabilities of the covs framework imple-
mentation in unicore on large-scale hpc systems (i.e. ibm BlueGene/P with
65536 processors) and the use of attribute-based authorization. In this paper we
emphasize on the improved collaborative features of the covs framework and
present new insights of how we deal with dynamic management of n participants,
transparency of Grid resources, and virtualization of hosts of end-users. We also
show that our interactive approach to hpc systems fully supports the necessary
single sign-on feature required in Grid and e-science infrastructures.

Keywords: Scientific Visualization, Computational Steering, COVS, VISIT, UNICORE

2

1. INTRODUCTION

Many e-science applications within Grids aim at simulation of a scientific
domain-specific problem and parallel computing is widely accepted to be an
essential tool for the solution of these complex scientific problems. Such
simulations of physical, chemical, biological or economical processes provide
insights into phenomena that either cannot be addressed by experimental meth-
ods or would require experiments that are too expensive or dangerous. Grid
applications that use parallel computing techniques for simulations have to use
computers with multiple processors that are able to jointly work on one or more
specific problems at the same time.

In many parallel simulations, for instance in computational fluid dynamics
(cfd), astrophysics, or weather and climate research, the tasks of simulation
and visualization of the results are usually done as independent steps. First, a
researcher performs a simulation for some fixed amount of computational time,
and then analyses the computed results in a separate post-processing step, for
instance by viewing the results in a dedicated visualization application.

On the contrary, several scientists have indicated a higher level of satisfaction
by using an interactive access and control of their Grid applications during
their run-time. That means it is often more efficient and more enlightening,
to perform both steps - simulation and visualization - at the same time by
also steering certain parameters of applications during run-time. Hence, the
scientists are able to observe the intermediate steps during the computation
of the simulations (online visualization) and can interact with an ongoing
parallel simulation to influence its computation (computational steering). Some
examples where interactive computational steering is used is for parameter
space exploration, in engineering applications to kick-start numerous events,
calibrations of simulations, and several other use cases.

In this contribution we will highlight certain design concepts of the Col-
laborative Online Visualization and Steering (covs) framework and its ref-
erence implementation within unicore [15], which allows for interactive
access to Grid applications. While many work around covs was published
[13, 12, 10, 9, 11], this paper emphasizes on features of how we deal with dy-
namic management of n participants, Grid transparency in terms of hostnames
and ports to satisfy end-user without technical knowledge (e.g. single sign-on).

This paper is structured as follows. Following the introduction the scene
is set in Section 2 where we present the evolution of the covs framework
reference implementation in unicore and its core building blocks. Section 3
then highlights covs framework features to seamlessly manage collaborative
interactive Grid applications. Section 4 describes two parallel hpc applications
that make use of the framework while a survey of related work is described in
Section 5. The paper ends with some concluding remarks.

Collaborative Interactivity in Parallel HPC Applications 3

2. COLLABORATIVE ONLINE VISUALIZATION
AND STEERING (COVS) FRAMEWORK

Thecovs framework enableshpc-based Grid applications with interactivity
(i.e. computational steering) and visualized feedback mechanisms. In earlier
work [13], we have shown a prototype covs technique implementation based
on the visualization interface toolkit (visit) [20] and the Grid middleware
unicore. visit is a communication library that provides a loosely coupled
approach between a parallel simulation on the one hand and its visualization
on the other.

In principle, visit transports specific datasets between the visualization and
simulation and thus conveys scientific and additional information such as in-
teractive (steering) commands. Following a broader requirement analysis for
covs [12], we observed that one of the most crucial design goals should be
to minimize the load on the steered simulation and to prevent failures or slow
operations of the visualization from disturbing the simulation progress on su-
percomputers. This leads to a design of visit where the e-science applications
(simulations) act as a client which initiates all operations like opening a new
connection, sending data to be visualized or receiving new interactive steer-
ing parameters. visit provides several components and most notably a visit

server (integrated in visualizations), a visit client (integrated in simulations),
and additionally a visit Collaboration Server and the visit Multiplexer to deal
with collaborative scenarios.

With the successful integration of visit, our approach grew to a maturecovs

framework implementation, which evaluation [10] proved that the approach
taken is feasible and provides sophisticated performance. Since then, we
observed a trend towards higher degrees of parallelism by employing a larger
number of moderately fast processor cores. As a result of these development,
supercomputer Grids will have to integrate peta-scale high-end computational
resources with many cores in the future, which implies that also our covs

framework is used with new kinds of applications. Therefore, we investigated
in [9] the impact of using the interactive computational steering capabilities of
the covs framework implementation in unicore on large-scale hpc systems
(e.g. ibm BlueGene/P jugene with 65536 processors).

More recently, we presented in [11] an extension of thecovs framework with
attribute-based authorization capabilities. This was particularly motivated by
challenges that arise in geographically dispersed visualization sessions, creating
a demand for a more fine-grained authorization based on attributes of end-users
such as VO/project membership or different roles (e.g. steerer, collaborator,
participant, etc.).

4

Figure 1. COVS Framework Reference Implementation in the UNICORE Grid middleware.

The currentcovs framework reference implementation architecture is shown
in Figure 1 [10]. It illustrates a collaborative scenario with two geographically
dispersed participants (i.e., client tier A and B). Both run on their machine
a scientific visualization that interacts with a covs GridBean plug-in, which
extends the gpe unicore Grid client [8].

The Grid client is used to submit computational jobs to the Grid and to
access two dedicated covs services that are compliant with the Web Service
Resource Framework (ws-rf) standard [21]. According to the factory pattern
of ws-rf, the client is used to call a covs Factory Service, which creates covs

Session resources that are in turn accessible via the covs Service. Hence, one
instance of such a session resource represents a collaborative visualization
session. This session resource can be used to manage different participants by
controlling the visit Multiplexer and the visit Collaboration Server. While
the visit Multiplexer is responsible to distribute the outcome of one parallel
simulation (i.e. scientific data) to n participants, the visit collaboration server
is used to exchange information (e.g. turn angle of viewpoints) between the n
participants. Both are using ssh connections using the strong security features
of unicore 6 more deeply explained in the next Section.

Collaborative Interactivity in Parallel HPC Applications 5

3. COVS FRAMEWORK FEATURES TO MANAGE
INTERACTIVE GRID APPLICATIONS

The previous section introduced the core building blocks of the covs frame-
work implementation and described that the scientific data, steering data, and
the collaboration data is transferred via secured dedicated connections with bi-
nary wire encoding using visit to achieve satisfactory performance. To ensure
fast establishment of bi-directional connections as well as satisfactory perfor-
mance, the Grid middleware of the covs framework must allow for interactive
access to the Grid resources bypassing the typically deployed resource man-
agement systems (rmss) on supercomputers that do scheduling. In addition,
the previous section also illustrated that the Grid application (i.e. parallel sim-
ulation) submission and management of collaborative sessions use Web service
calls that in terms of the overall performance are non-critical. Nevertheless, the
covs framework implementation exposes an overview of the participants and
their connection status during a covs session to all participants. This includes
information about the performance and status of each connection to identify
bottlenecks.

It is also important to mention that the applicability of interactive steering
depends on the type of the Grid application. The time for one computational
step should not take too long in order to avoid long-winded online visualizations
(no direct feedback) and to see the impact of steering almost immediately. On
the other hand, the time for one computational step should not be too short, in
order to give the end-user of covs the chance to steer the parameters based
on the current status, before the next data from the simulation is displayed. In
order to allow for steering, the parallel Grid simulation must be parameterized
in a way that allows the change of values during its run-time.

Since the ssh connections are critical, we give insights in this section how
they are created by still providing single sign-on. Hence, the seamless integra-
tion into Grids places the requirement on covs components to remain single
sign-on, which avoids specific logins or tedious password requests.

Also, this section will describe in detail how transparency of Grid resources
in terms of hostnames and ports are realized within the covs framework.
Hence, the covs framework implementation is typically well embedded in a
broad Grid or e-science infrastructure by the meaning of hiding the fact that
resources are physically distributed. This transparency includes differences
in security policies, data representation, and how a resource is accessed when
using services of the covs framework.

Both described fundamental features of covs are necessary in order to
provide high-levels of usability for end-users that have no technical Grid un-
derstanding like many e-scientists that are experts in their scientific domain,
but are no experts in distributed system technologies.

6

3.1 Secure Data Transfer and Interactive Access

The covs framework relies on the usage of a bi-directional connection
for secure data transfer between the parallel simulation and the visualizations
with low latency. Lessons learned from earlier work [2] in the context of
covs revealed that if interactive steering data is transferred through several
Grid components (e.g. Grid services) the overall latency will considerably
increase compared to a direct connection. Therefore, the implementation of
the covs framework is based on ssh connections for the transfer of scientific
and interactive steering data, also because firewalls often allow access via ssh

to the protected systems (i.e. supercomputers) running parallel simulations.

Figure 2. Using interactive calls for the establishment of SSH connections.

Collaborative Interactivity in Parallel HPC Applications 7

Figure 2 illustrates that the visualization makes a connection request to
the covs Grid Bean (1). Afterwards, the covs Grid Bean generates an ssh

session key pair on the fly (2) and transports the public key to the unicore

Grid site (3). The unicore Grid middleware in turn adds the key into the
$HOME/.ssh/authorized keys file (4) using a previously installed unicore

software resource (sw-resource) [15] visit init.pl.
The Grid client gets the resource specific details such as the username,

hostname or the location of the visit vttproxy from this script as well (5).
These pieces of information and the key pair are then transferred to the scientific
visualization application (6). In particular, this application integrates the visit

server of the communication library visit, which uses the transferred details
to make a ssh connection request to the ssh daemon of the unicore Grid site
(7). The daemon in turn checks whether the used session key is present in the
$HOME/.ssh/authorized keys file (8). After approval, the vttproxy component
of visit is started and thus a bi-directional connection can be established (9).

Finally, the parallel simulation uses the visit client that sends the data to the
vttproxy (10), which in turn forwards the data over the secure ssh connection
to the visualization using the visit protocol. The vttproxy acts as a proxy for
the visualization located in the same security domain as the simulation. The
simulation can still decide when to connect to the vttproxy.

After the establishment of the connection, the sw-resource visit cleanup.pl is
used to remove the session key from the $HOME/.ssh/authorized keys file. The
key transfer and its addition to this file raise the demand for interactive access
so that the establishment of the ssh connection is not scheduled via a Resource
Management System (rms) typically deployed on Grid resources. This is
realized by using the interactive label within the unicore configuration
for the two sw-resources visit init.pl and visit cleanup.pl.

Furthermore, the usage of the Grid middleware unicore ensures that the
implementation provides authentication and authorization of users. In par-
ticular, the Grid job from the gpe Client, which includes the execution of
sw-resources, can only be executed if the user of the Grid client is correctly
authenticated and authorized at the enhanced njs [19] backend of unicore.
Hence, the implementation gains the benefit of the unicore security infras-
tructure since a non-authorized user is not able to establish the ssh connection
and thus can not use it for visualization.

Also, the installation is very lightweight, because both sw-resources are
simple perl-scripts that run directly on the supercomputer. Note that the same
principle of establishment is also used in collaborative visualization sessions
between the multiplexer and several visualizations also using the vttproxy
component in between.

8

3.2 Naming Service for Decoupling COVS Components

One of the fundamental ideas of the covs framework is to hide the com-
plexity of the Grid from its end-users. That leads to the demand that they
do not have to deal with hostnames, usernames, or other environment-specific
details. This section provides details of how exactly the connections on the
network-level between all the different components are realized by still hiding
the necessity for hostnames, usernames and ports from end-users. Hence, after
the successful establishment of the ssh tunnel and startup of the vttproxies as
described in the previous section, the used visit components including the
visit multiplexer, visit collaboration server, visit servers and visit client
must exactly know where to send data. In other words, these components
require exact hostname and port information form each other.

The key to the understanding of this internal information exchange is a
simple naming services provided by the visit toolkit named as the Service
Announcement Protocol (seap) server [20]. This server allows for a decou-
pling of the parallel simulation and their visualizations. It basically maps a
seapservice:seappassword to a set of information that comprises a hostname
and port. Here, the seapservice is used for the identification of a client tier or
simulation, while seappassword is used for the identification of a covs session.
Hence, it does not deal with authorization based on passwords.

One of the major requirements of the covs framework is to prevent dis-
turbances of the simulation progress by any online visualizations that are con-
nected to it. Therefore, the parallel simulation itself connects to the visit

multiplexer component, which in turn needs to connect to multiple visualiza-
tions using the vttproxies of each visualization as shown in Figure 3. Hence,
the parallel simulation needs to know the hostname and port of the vttproxies
that forward the data through the ssh connections to the visualizations.

Another key to the understanding relies in the covs Grid Bean implemen-
tation that interacts with the covs Grid service, which exposes ongoing covs

session information via WS-Resource properties [21]. In the context of the
seap server, the covs Grid Bean is used to set up a covs session, which leads
to the creation of a seappassword (e.g. svc1) for this session. This identifier is
kept internally within the implementation, instead the end-users see a human
readable name for this session which is mapped on the internal identifier.

In the context of Figure 3, some end-user (e.g. client tier C) has already
created such as session that is internally identified by svc1 as the seappassword.
The human readable name related to this identifier is exposed via WS-Resource
properties to the client tier A and B. Therefore, the covs Grid Bean shows
this particular session and both client tier A and B are able to request for
participation in this particular session as follows.

Collaborative Interactivity in Parallel HPC Applications 9

Figure 3. Using the VISIT SEAP server as naming service. Two geographically dispersed
participants are dynamically connected using seapservice:seappassword abstractions. SEAP
information exchanges are also tunneled via SSH were necessary.

As illustrated in Figure 3, client tier A makes a participation request for a
specific session at the covs Grid service using Web service message exchanges
(1). Internally, this session is identified by svc1. Next, the covs Grid service
generates a seapservice idA for this participant (2). Hence, the combination
idA:svc1 identifies a particular user that participates in a specific covs session.
This combination is send back to the covs Grid Bean (3). Afterwards, the
covs Grid Bean creates the ssh tunnel using the mechanisms described in the
previous sections (4). In order to publish the location of the started vttproxy
A, the combination idA:svc1 is registered at the seap server (5) and maps to
the specific hostname and port of the vttproxy A.

The same steps occur when client tier B makes a participation request (6).
This leads to the generation of the combination idB:svc1 (7). Furthermore,

10

this combination is send back to the client tier B (8). Afterwards, the covs

Grid Bean on client tier B creates a ssh tunnel (9) and registers the location of
vttproxy B under the combination idB:svc1 at the seap server (10). Note that
all these pieces of information are transferred via secure Web service message
exchanges or using the secure ssh tunnel.

While the end-users on client tier A and B wait for connection to the sim-
ulation, the parallel simulation job is submitted through the Grid middleware
unicore for instance by an end-user at client tier C (not in the figure). This
leads to a generation of the sim:svc1 combination at the covs Grid services
(11). Hence, this combination identifies a particular simulation that provides
the data for a specific interactive covs session. This information is given as
an input to the visit multiplexer (12).

Furthermore, this particular simulation is submitted to the underlying Grid
resource by providing the sim:svc1 combination for identification of the sim-
ulation (13). The multiplexer registers the combination sim:svc1 at the seap

server that maps on the location of the multiplexer (hostname and port) (14).
This is necessary to provide the simulation with information where to send the
data. But before any data is send, the combinations idA:svc1 and idB:svc1 are
added to the multiplexer (15). Therefore the multiplexer is able to query for
the exact location of vttproxy A and vttproxy B using these combinations (16)
and to establish a connection to them.

In the meanwhile, the parallel simulation queries the seap server using its
identification combination sim:svc1 in order to know the exact location of the
multiplexer (17). This information is then used to send the scientific data of the
parallel simulation to the multiplexer (18). Next, the multiplexer sends this data
via the connections to the vttproxies (19) that in turn forwards the data to the
corresponding visualizations through the ssh tunnel. Of course, this established
mechanism works also for the interactive steering control information that is
using the same bi-directional channels and identification combinations.

Also, Figure 3 reveals the unique design of visit since the visit servers
are integrated into the visualizations at the client-side, while the visit client is
integrated into the parallel simulation. This makes the parallel simulation act as
a client that initiates all operations like opening a connection, or sending the data
to be visualized or receiving new interactive steering parameters. Finally, the
exact hostname and port of the seap server itself are typically configures within
an environment variable at the sites that run visit-enabled components. To sum
up, by using the seap server within the covs framework implementation all
hostnames and ports of covs session participants are dynamically configured
at run-time which allows for maximum flexibility for ad-hoc participating end-
users.

Collaborative Interactivity in Parallel HPC Applications 11

3.3 Enable Collaboration with Naming Service

Similar to the decoupled communication with the visit multiplexer and
vttproxies as described in the previous section, the visit collaboration server
uses also the seap naming service for decoupled communication. The col-
laboration server is used to exchange collaboration data between the multi-
ple visualizations that participate in a covs session. In particular, the Col-
laborationAdapter within the covs Grid service starts the visit collabora-
tion server that in turn register itself under a combination of collaseapser-
vice:collaseappassword at the seap server. This means the combination maps
to the correct hostname and port of the collaboration server on the target system
tier.

In addition, the collaseapservice:collaseappassword combination is also
exposed via WS-Resource properties of the covs Grid service. Therefore, the
covs Grid Bean gets this information via WS message exchanges and transfers
it to the scientific visualization via the covs GridBean. After this transfer is
done, the scientific visualization uses this information to query the seap server
through the ssh tunnel in order to get the correct port and hostname of the
collaboration server. Hence, the scientific visualization establishes a connection
to the collaboration server through the ssh tunnel using the seap server.
This allows for dynamic configurations of the visit collaboration server, for
instance, it can be deployed on another host than thevisit multiplexer (decrease
load on host) and thus making it necessary to establish another ssh tunnel to
this particular host.

To sum up, all collaboration data that is exchanged between the collabo-
ration server and multiple visualizations is securely tunneled via ssh tunnels,
including the seap information exchange.

4. INTERACTIVE COMPUTATIONAL USE CASES

In this section we review how the covs framework implementation is used in
interactive use cases with parallel hpc applications that solve n-body problems.
N-body problems appear in many scientific domains such as astrophysics,
plasma-physics, molecular dynamics, or fluid dynamics. N-body problems are
concerned with determining the effect of forces between bodies (i.e. particles)
[16]. In the domain of astrophysics several scientists use the covs framework
implementation with the Nbody6++ [14] code, which is a parallel variant of
the Aarseth-type N-body code nbody6 suitable for N-body simulations on
massively parallel resources.

The scientists use the framework with different subversions of the main
code Nbody6++ for different areas of astrophysical research. These areas are
dynamics of star clusters in galaxies and their centres, formation of planet

12

systems and dynamical evolution of planetesimal. In this context, the interac-
tivity enabled via the framework allows for the exploration of parameter spaces
through computational steering. In addition, the collaborative session support
allows new forms of collaboration and experience exchange with geographi-
cally dispersed e-scientists within the AstroGrid-D, which is the astrophysical
VO within the German National Grid D-Grid [17].

Another interactive use case in the area of e-science applications that rep-
resent N-body problems are several routines of the Pretty Efficient Parallel
Coulomb solver (pepc) [7]. Plasma-physics scientists use the covs frame-
work implementation with these massively parallel codes that use a hierarchical
tree algorithm to perform potential and force summation of n charged particles
in a time O(n log n). This allows for mesh-free particle simulation on length-
and time-scales usually possible only with particle-in-cell or hydrodynamic
techniques.

One particular use case of this code is for the simulation of a particle ac-
celerator via laser pulses and the interactive approach of covs realizes an
interactive control of the laser target configuration. This in turn is very useful
to verify start-up parameters such as the initial alignment of laser and target, or
to perform quick test runs with a small set of particles as a prelude to full-blown
production runs on large-scale systems.

In the context of large-scale systems (e.g. peta-scale systems) we foresee
that any many-body code which is attempting to model macroscopic systems
will benefit from higher particle numbers. This is because on the one hand
it improves the overall statistics by better reproducing the mathematical set
of equations used to describe the system. On the other hand the large scale
systems permit simulation of larger, often more realistic systems (i.e. a galaxy
in astrophysics).

Basically, we learn from both our covs framework use cases that there
is no upper limit on the number of simulation particles, but some codes are
still in the process of getting scalable towards high amount of cores. This is
particularly the case for codes that keep local copies of certain global data and
are thus rather memory bound. But this could be overcome with some code
restructuring which should permit scaling up to high amount of processors.
In this context, also computational steering methods of the covs framework
have to be revised, especially in terms of the well-known master-slave pattern.
This means the master collects the data from all processors and sends it to the
visualizations. The current trend is that more than one masters are used to
collect the data and to send the data out but this is still work in progress and
has to be researched more deeply in terms of scalability towards peta-scale
systems.

Collaborative Interactivity in Parallel HPC Applications 13

5. RELATED WORK

In the context of our work and the related work in the field interactivity
mostly refers to the capability of a framework for computational steering. The
uk RealityGrid project provides a steering library [1] that enable calls which
can be embedded into its three components that are simulation, visualization,
and a steering client. While the covs framework is loosely coupled to the Grid
middleware unicore, and could be in principle used with any other ws-rf

compliant Grid middleware (e.g. Globus Toolkit [3]), the RealityGrid steering
library is much more tighter integrated with the Imperial College e-Science
Networked Infrastructure (iceni) [6].

Related work in the field can be also found in the naregi project [18]
offers a visualization system that consists of a visualization library and a Grid
visualization api [4]. Even if this framework is also ws-rf compliant and thus
similar to our work, the steering and interactive capabilities are rather limited
(e.g. turn views on the simulation) that is not directly computational steering.

Finally, another well-known work with interactive behavior is the Grid
Enabled Visualization Pipeline (gvid) [5], which offers interactive capabilities
via Event-Encoders that run on thin clients and sends steering commands to the
simulation. The major difference to our approach is that it is not seamlessly
integrated as a higher-level service into a common Grid middleware.

6. CONCLUSIONS

This paper describes how the computational steering and online visualization
with the covs framework implementation can be used within todays Grid and
e-science infrastructures. The fundamental benefit of our approach is that the
covs framework implementation can be used by any parallel application that
is instrumented with the visit toolkit to gain interactive functionality in terms
of computational steering.

According to our evaluations we proved that the ssh connections and the
visit protocol that is used between all visit components provides reasonable
low latency to interactively steer a hpc application conveniently. This also
implies the real-time feedback per visualizations to observe changes in the
application during run-time according to the steered parameters.

Also, we have shown how the seap server is used within our framework to
solve the Grid transparency issues. By using the seap naming service within
the covs framework implementation all hostnames and ports of covs session
participants are dynamically configured at run-time which allows for maximum
flexibility for ad-hoc participating end-users that have to technical knowledge
about the distributed nature of the Grid.

14

To conclude, our interactive approach with a dedicated data and steering
channel provides much better performance than using xml-based Web service
message exchanges for large data transfer, while Web services are well suited
for the management of the connections and the control of collaborative covs

sessions.

REFERENCES

[1] Cohen, J. et al., ”RealityGrid: an integrated approach to middleware through ICENI”, in
Philosophical Transactions of The Royal Society A, 363, pages 1817–1827, 2005

[2] Eickermann, Th. et al, ”Steering UNICORE Applications with VISIT”, in Philosophical
Transactions of The Royal Society Journal, London, 2005

[3] Foster, I., ”Globus Toolkit version 4: Software for Service-Oriented Science”, in Pro-
ceedings of IFIP International Conference on Network and Parallel Computing, LNCS
3779, pages 213–223, Springer-Verlag, 2005

[4] Kleijer, P. et al., ”API for Grid Based Visualization Systems”, in GGF 12 Workshop on
Grid Application Programming Interfaces, 2004

[5] Köckerbauer, Th. et al.,”GVid - Video Coding and Encryption for Advanced Grid Visu-
alization”, in Proceedings of the first Austrian Grid Symposium, Linz, 2005

[6] Mayer, A. et al., ”ICENI: an integrated Grid middleware to support e-Science”, in Com-
ponent models and systems for Grid applications, pages 109–124, Springer Verlag, 2005

[7] Pfalzner, S. et al., Many-body Tree Methods in Physics, Cambridge University Press,
1996, ISBN-10: 0521019168

[8] Ratering R. et al, ”GridBeans: Supporting e-Science and Grid Applications”, in Pro-
ceedings of the 2nd IEEE International Conference on e-Science and Grid Computing
(e-Science 2006), Amsterdam, 2006

[9] Riedel M. et al., ”Computational Steering and Online Visualization of Scientific Appli-
cations on Large-Scale HPC Systems”, in Proceedings of the 3rd IEEE International
Conference on e-Science and Grid Computing (e-Science 2007), Bangalore, India, 2007

[10] Riedel, M. et al., ”Design and Evaluation of a Collaborative Online Visualization and
Steering Framework Implementation for Computational Grids”, in Proceedings of the 8th
IEEE/ACM Int. Conf. on Grid Computing, Austin, USA, 2007

[11] Riedel, M. et al., ”Extending the Collaborative Online Visualization and Steering Frame-
work for Computational Grids with Attribute-based Authorization”, in Proceedings of the
9th IEEE/ACM Int. Conf. on Grid Computing, Tsukuba, Japan, 2008, to be published

[12] Riedel M. et al., ”Requirements and Design of a Collaborative Online Vi-
sualization and Steering Framework for Grid and e-Science Infrastructures”,
in Online Proceedings of German e-Science Conference, Baden-Baden, Online:
http://edoc.mpg.de/display.epl?mode=doc
&id=316630&col=100&grp=1414, 2007

[13] Riedel, M. et al., ”VISIT/GS: Higher Level Grid Services for Scientific Collaborative On-
line Visualization and Steering in UNICORE Grids”,in Proceedings of 6th International
Symposium on Parallel and Distributed Computing 2007 (ISPDC2007), Linz, Austria,
ISBN 0-7695-2936-4, 2007

[14] Spurzem, R. et al., Nbody6 Features of the Computer Code, Online: ftp://ftp.ari.uni-
heidelberg.de/pub/staff/spurzem/nb6mpi/nbdoc.tar.gz, 2003

[15] Streit A. et al., ”UNICORE - From Project Results to Production Grids”, in Grid Com-
puting: The New Frontiers of High Performance Processing, Advances in Parallel Com-
puting, 14, pages 357–376, Elsevier, 2005

[16] Wilkinson, B. et al., Parallel Programming, Prentice Hall, 1999, ISBN 0-13-671710-1

[17] German National Grid Initiative D-Grid, Online: http://www.d-grid.de

[18] NAREGI Project, Online: http://www.naregi.org

[19] UNICORE Website, Online: http://www.unicore.eu

[20] Visualization Interface Toolkit (VISIT), Online: http://www.fz-juelich.de/zam/visit

[21] Web Services Resource Framework (WSRF) Technical Committee (OASIS), Online:
http://www.oasis-open.org/committees/wsrf

