
Replay-based synchronization of timestamps in event traces of

massively parallel applications

Daniel Becker1,2, John C. Linford3, Rolf Rabenseifner4, and Felix Wolf1,2

1Forschungszentrum Jülich 2RWTH Aachen University

Institute for Advanced Simulation Department of Computer Science

52425 Jülich, Germany 52056 Aachen, Germany

{d.becker, f.wolf}@fz-juelich.de

3Virginia Tech 4University of Stuttgart

Department of Computer Science High-Performance Computing-Center

Blacksburg, VA 24061, USA 70550 Stuttgart, Germany

jlinford@vt.edu rabenseifner@hlrs.de

Abstract

Event traces are helpful in understanding the perfor-

mance behavior of message-passing applications since they

allow in-depth analyses of communication and synchroniza-

tion patterns. However, the absence of synchronized hard-

ware clocks may render the analysis ineffective because in-

accurate relative event timings can misrepresent the logical

event order and lead to errors when quantifying the impact

of certain behaviors. Although linear offset interpolation

can restore consistency to some degree, inaccuracies and

time-dependent drifts may still disarrange the original suc-

cession of events - especially during longer runs. In our

earlier work, we have presented an algorithm that removes

the remaining violations of the logical event order post-

mortem and, in addition, have outlined the initial design

of a parallel version. Here, we complete the parallel de-

sign and describe its implementation within the SCALASCA

trace-analysis framework. We demonstrate its suitability

for large-scale applications running on more than thousand

application processes and show how the correction can im-

prove the trace analysis of a real-world application exam-

ple.

1 Introduction

Event tracing is a popular technique for the postmortem

performance analysis of message-passing applications be-

cause it can be used to investigate temporal relationships

between concurrent activities. Obviously, the accuracy of

the analysis depends on the comparability of timestamps

taken on different processors. Inaccurate timestamps may

cause a given interval to appear shorter or longer than it

actually was, or change the logical event order, which re-

quires a message to be received only after it has been sent.

This is also referred to as the clock condition. Inaccurate

timestamps may also lead to false conclusions during per-

formance analysis, for example, when the impact of cer-

tain behaviors is quantified, or - even more strikingly - may

confuse the user of trace visualization tools such as VAM-

PIR [21] by causing arrows representing messages to point

backward in time-line views.

To avoid clock-condition violations, the error of times-

tamps should ideally be smaller than one half of the mes-

sage latency. While some systems such as IBM Blue Gene

offer a relatively accurate global clock, many other sys-

tems including most PC clusters provide only processor-

local clocks that are either entirely non-synchronized or

synchronized only within disjoint partitions (e.g., SMP-node

or multicore-chip). Clock synchronization protocols, such

as NTP [20], can align the clocks to a certain degree, but are

often not accurate enough for our purposes. Assuming that

every local clock on a parallel machine runs at a different

but constant speed (i.e., drift), the (global) time of an arbi-

trarily chosen master clock can be calculated locally as a

linear function of the local time. However, as the assump-

tion of constant drift is only an approximation, violations

of the clock condition may still occur - especially when the

offset measurements needed for the interpolation are taken

International Conference on Parallel Processing - Workshops

1530-2016/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP-W.2008.17

212

with long intervals in between.

While the errors of single timestamps are hard to assess,

clock-condition violations can be easily detected and offer

a toehold to increase the fidelity of inter-process timings. In

our earlier work [3], we have presented an algorithm that

retroactively corrects timestamps violating the clock condi-

tion in event traces of MPI applications. However, in view

of rapidly increasing parallelism combined with advances

in scalable trace-analysis technology [4, 14, 5], it is cru-

cial that the algorithm scales to large numbers of appli-

cation processes. For this reason, we have designed and

implemented a parallel version of the algorithm and inte-

grated it into the SCALASCA performance-analysis frame-

work [1]. Instead of sequentially processing a single global

trace file, we follow SCALASCA’s scalable trace-analysis

approach [14] and process separate process-local trace files

in parallel by replaying the original communication on as

many CPUs as have been used to execute the target appli-

cation itself. Since trace processing capabilities (i.e., pro-

cessors and memory) grow proportionally with the number

of application processes, we can achieve good scalability at

very large scales.

The outline of this article is as follows: After review-

ing related work in Section 2, we briefly describe the se-

rial version of the algorithm in Section 3. In Section 4, we

complete the parallel design outlined in [3] and explain its

implementation within the SCALASCA trace-analysis infras-

tructure. We evaluate the scalability of the parallel version

in Section 5, where we also show how our scheme can im-

prove trace-analysis results on systems with insufficiently

synchronized clocks. Finally in Section 6, we conclude our

paper and give an outlook on future work.

2 Related Work

Network-based synchronization protocols aim at syn-

chronizing distributed clocks before reading them. The dis-

tributed clocks query the global time from reference clocks,

which are often organized in a hierarchy of servers. For in-

stance, NTP [20] uses widely accessible and already syn-

chronized primary time servers. Secondary time servers

and clients can query time information via both private net-

works and the Internet. To reduce network traffic, the time

servers are accessed only in regular intervals to adjust the

local clock. Jumps are avoided by changing the drift while

leaving the actual time unmodified. Unfortunately, varying

network latencies limit the accuracy of NTP to about one

millisecond compared to a few microseconds required to

satisfy the clock condition for MPI applications running on

clusters equipped with modern interconnect technology.

Time differences among distributed clocks can be char-

acterized in terms of their relative offset and drift (i.e., the

rate at which the offset changes over time). In a simple

model assuming different but constant drifts, global time

can be established by measuring offsets to a designated

master clock using Christian’s probabilistic remote clock

reading technique [6]. After estimating the drift, the lo-

cal time can be mapped onto the global (i.e., master) time

via linear offset interpolation. Offset values among par-

ticipating clocks are measured either at program initializa-

tion [9] or at initialization and finalization [18], and are

subsequently used as parameters of the linear correction

function. While this scheme might prove satisfactory for

short runs, measurement errors and time-dependent drifts

may create inaccuracies and clock-condition violations dur-

ing longer runs. Additionally, repeated drift adjustments

caused by NTP may impede linear interpolation, as they de-

liberately introduce non-constant drifts.

If linear interpolation alone turns out to be inadequate

to achieve the desired level of accuracy, error estimation

allows the retroactive correction of clock values in event

traces after assessing synchronization errors among all dis-

tributed clock pairs. First, difference functions among

clock values are calculated from the differences between

clock values of receive events and clock values of send

events (plus the minimum message latency). Second, a

medial smoothing function can be found and used to cor-

rect local clock values because for each clock pair two dif-

ference functions exist. Regression analysis and convex

hull algorithms have been proposed by Duda [8] to de-

termine the smoothing function. Using a minimal span-

ning tree algorithm, Jezequel [16] has adopted Duda’s algo-

rithm for arbitrary processor topologies. In addition, Hof-

mann [15] has improved Duda’s algorithm using a simple

minimum/maximum strategy. Babaoǧlu and Drummond

[2, 7] have shown that clock synchronization is possible at

minimal cost if the application makes a full message ex-

change between all processors in sufficiently short intervals.

However, jitter in message latency, nonlinear relations be-

tween message latency and message length, and one-sided

communication topologies limit the usefulness of error es-

timation approaches.

In contrast, logical synchronization uses happened-

before relations among send and receive pairs to synchro-

nize distributed clocks. Lamport has introduced a dis-

crete logical clock [17] with each clock being represented

by a monotonically increasing software counter. As lo-

cal clocks are incremented after every local event and the

updated values are exchanged at synchronization points,

happened-before relations can be exploited to further val-

idate and synchronize distributed clocks. If a receive event

appears before its corresponding send event, that is, if a

clock-condition violation occurs, the receive event is shifted

forward in time according to the clock value exchanged.

As an enhancement of Lamport’s discrete logical clock,

Fidge [10, 11] and Mattern [19] have proposed a vector

213

clock. In their scheme, each processor maintains a vec-

tor representing all processor-local clocks. While the local

clock is advanced after each local event as before, the vec-

tor is updated after receiving a message using an element-

wise maximum operation between the local vector and the

remote vector that has been sent along with the message.

3 Controlled Logical Clock

The controlled logical clock (CLC) algorithm by Raben-

seifner [22, 23] retroactively corrects clock condition vio-

lations in event traces of message-passing applications by

shifting message events in time while trying to preserve

the length of intervals between local events. The algo-

rithm restores the clock condition using happened-before

relations derived from message semantics. The clock con-

dition, given in Equation 1, requires that a receive event oc-

curs at the earliest lmin after the matching send event, with

lmin being the minimum message latency.

trecv ≥ tsend + lmin (1)

If the condition is violated for a send-receive event pair,

the receive event is moved forward in time. To preserve

the length of intervals between local events, events follow-

ing or immediately preceding the corrected event are moved

forward as well. These adjustments are called forward and

backward amortization, respectively. Note that the accuracy

of the adjustment depends on the accuracy of the original

timestamps. Therefore, the algorithm benefits from weak

pre-synchronization such as the aforementioned linear off-

set interpolation.

Figure 1 illustrates the different steps of the CLC algo-

rithm using a simple example consisting of two processes

exchanging a single message. The subfigures show the time

lines of the two processes along with their send (S) and re-

ceive (R) events, each of them enclosed by two other events

(Ei). Figure 1(a) shows the initial event stream based on the

measured timestamps with inefficiently synchronized local

clocks. It exhibits a violation of the clock condition by hav-

ing the receive event appear earlier than the matching send

event. To restore the clock condition, R is moved forward in

time to be lmin ahead of S (Figure 1(b)). Since now the dis-

tance between R and E4 becomes too short, E4 is adjusted

during the forward amortization to preserve the length of the

interval between both events (Figure 1(c)). The jump dis-

continuity introduced by adjusting R affects not only events

later than R but also events earlier than R. This is corrected

by the backward amortization which shifts E2 closer to the

new position of R, see Figure 1(d).

While the forward amortization is at least initially ap-

plied to all events following R, the backward amortization

applies a linearly increasing correction to a limited amor-

tization interval before R. However, in order to avoid new

violations of the clock condition, the correction must not ad-

vance any send event located in this interval farther than the

matching receive event (minus the minimum message la-

tency). In such a case, we apply the linear correction piece-

wise, advancing the send events as far as possible and cal-

culating a different slope for each subinterval before, after,

or between those sends [3, 23].

S

time

p
ro

c
e

s
s
e

s

E1 E3

E2 E4R

(a) Inconsistent event trace: clock condition violation in

point-to-point communication pair.

R

S

time

p
ro

c
e

s
s
e

s

E1 E3

E2 E4R

(b) Locally corrected event trace: timestamp of the violat-

ing receive event is advanced to restore the clock condi-

tion.

R

S

time

p
ro

c
e

s
s
e

s

E1 E3

E2 E4R E4

(c) Forward amortized event trace: event E4 following the

receive event is adjusted to preserve the length of the in-

terval between both events.

R

S

time

p
ro

c
e

s
s
e

s

E1 E3

E2 E4R E4E2

(d) Backward amortized event trace: event E2 preceding

the receive event is advanced to smooth the jump.

Figure 1. Backward and forward amortization

in the controlled logical clock algorithm.

Note that the algorithm only moves events forward in

time. To prevent an increase of the overall time represented

by the trace that may occur as a result of a domino-style

propagation of forward amortizations, the algorithm applies

scaling factors (i.e. control variables) to ensure that the

overall error remains within predefined boundaries. Here,

the CLC algorithm always tries to advance all processor

214

clocks to the fastest clock when correcting the non-linearity

of the clocks. Given that original timestamps may be logi-

cally wrong, this correction leads to logically correct times-

tamps with marginal local inaccuracies. As a result, times-

tamp differences between events on different processes nor-

mally become more accurate than the original ones because

the clocks are advanced to the fastest one.

Since the original (CLC) algorithm takes only point-to-

point messages into account, it has been extended by Becker

et al. [3] to apply to realistic MPI applications that perform

not only point-to-point but also collective communication.

In our event model, a collective operation instance consists

of multiple pairs of enter and exit events (i.e., one pair for

each participating process). The basic idea behind extend-

ing the CLC algorithm to collective communication is to

map collective communication onto point-to-point commu-

nication. For this purpose, we consider a single collective

operation as a composition of multiple point-to-point oper-

ations, taking the semantics of the different flavors of MPI

collective operations into account (e.g. 1-to-N, N-to-1, etc.).

For instance, in an N-to-1 operation one root process re-

ceives data from N other processes. Given that the root

process is not allowed to exit the operation before it has

received data from the last process to enter the operation,

the clock condition must be observed between the last en-

ter event and the exit event of the root process. Depending

on the flavor of the collective operation, different enter and

exit events are mapped onto send and receive events, re-

spectively. In reference to the fact that our method is based

on logical clocks, we call the send and receive event type

assigned during this mapping the logical event type as op-

posed to the actual event type (e.g., enter or collective exit)

specified in the event trace.

Until recently, only a serial implementation of the orig-

inal (CLC) algorithm existed. In the next section, we de-

scribe how the extended version of the algorithm has been

parallelized and how the parallel version has been integrated

into the SCALASCA trace-analysis framework.

4 Parallel Timestamp Synchronization

SCALASCA, which has been specifically designed for

large-scale systems, scans event traces of parallel applica-

tions for wait states that occur when processes fail to reach

synchronization points in a timely manner, for example, as

a result of an unevenly distributed workload. Such wait

states can present severe challenges to achieving good per-

formance, especially when trying to scale communication-

intensive applications to large processor counts. As a first

step towards reducing their impact, SCALASCA provides a

diagnostic method that allows their localization, classifica-

tion, and quantification, especially at larger scales. Scala-

bility is achieved by analyzing the process-local traces in

parallel, making SCALASCA a parallel program in its own

right.

Similar to the wait-state analysis [14] performed by

SCALASCA, the CLC algorithm requires comparing events

involved in the same communication operation, which

makes it a suitable candidate for the same parallelization

strategy. Instead of sequentially processing a single global

trace file, SCALASCA processes separate process-local trace

files in parallel by replaying the original communication on

as many CPUs as have been used to execute the target appli-

cation itself. Since trace processing capabilities (i.e., pro-

cessors and memory) grow proportionally with the number

of application processes, we can achieve good scalability at

very large scales. During the replay, sending and receiving

processes exchange relevant information needed to analyze

the communication operation being replayed. The parallel

CLC algorithm is divided into two replay phases: a forward

phase for the forward amortization and a backward phase

for the backward amortization. The backward phase is only

needed if clock condition violations appear during the for-

ward phase.

Integration with SCALASCA. Almost all the post-

mortem trace-analysis functionality of SCALASCA includ-

ing the parallel CLC algorithm is implemented on top of

PEARL [13], a parallel library that offers higher-level ab-

stractions to read and analyze large volumes of trace data.

A typical PEARL application is a parallel program having as

many processes as the target application had that generated

the trace data, resulting in a one-to-one mapping of target

application and analysis processes. All analysis processes

read the trace data of “their” application process into main

memory and traverse the traces in parallel while exchanging

information at synchronization points.

Local

event traces

Parallel execution

of target application

Parallel

analysis

Linear interpolation &

controlled logical clock

Local

event traces
Trace

visualization

rewrite

Figure 2. Parallel trace-analysis process.

In SCALASCA, the parallel CLC algorithm is applied af-

ter the traces have been loaded and before the wait-state

analysis takes place. To increase the fidelity of the CLC out-

come, the timestamps first undergo a pre-synchronization

step. This step performs linear offset interpolation based on

offset measurements taken during initialization and final-

ization of the target application. Once the offset values are

known to each analysis process, the operation is performed

locally and does not require any further communication. As

an alternative to the native SCALASCA wait state analysis,

the traces can also be rewritten with modified timestamps,

215

converted, and visualized using VAMPIR. The full analysis

process is illustrated in Figure 2.

Forward amortization. During the forward phase, the

communication replay proceeds in the same direction as it

did in the target application. For every pair of logical send

and receive events, the sending process sends the timestamp

of the logical send event to the receiving process, which

compares it to the timestamp of the matching logical receive

event (minus the minimum message latency) and, if neces-

sary, applies the forward-amortization equation described

in [3]. Recall that, in addition to actual send and receive

events, events pertaining to entering or leaving collective

communication operations may be classified as logical send

or receive events. In this case, the logical event type is de-

rived from the name of the collective operation and the role

(e.g., root) a particular process plays in the operation.

In its treatment of events the algorithm distinguishes be-

tween (logical) send/receive events and internal events that

neither send nor receive any kind of message. A different

action is performed for each of the three types. Since the

correction of an internal event does not require any extra

communication, the timestamp adjustment is immediately

applied. A send event is adjusted locally and the new times-

tamp is sent via forward-replay to the receiving process. On

the receiver side, the order of these two steps is reversed.

The adjusted send timestamp must be obtained from the

sender, before the correction can be performed. Finally, the

receiver saves detected clock condition violations temporar-

ily along with the associated error so that this information

can be reused during the backward amortization phase.

While the direction of inter-process exchange of times-

tamps is determined by the (logical) type of an event (i.e.,

send or receive), the actual communication operation in-

voked to accomplish the transfer depends on the operation

originally used by the target application. For this purpose,

communication operations are classified according to the

number of peers involved on either side: point-to-point, 1-

to-N, N-to-1, N-to-N, and two special classes for scan and

exscan operations.

For the sake of simplicity, our current implementation

uses two different values for the minimum message latency

lmin (see Equation 1): the minimum inter-node and the

minimum intra-node latency. Following a conservative ap-

proach aimed at avoiding overcorrection, we refrained from

considering an extra collective latency, as the duration of

collective operations may depend on many factors that are

hard to identify, some of them even hidden inside the un-

derlying MPI implementation. Thus, the algorithm requires

exchanging the timestamps and the node identifiers to know

which of the two latency values must be used.

As mentioned earlier, the CLC algorithm uses so-called

control variables. The control variable γ
j
i ∈ [0, 1] for e

j
i

(the jth event on process i) is a scaling factor that is applied

to interval expressions when calculating the new timestamp

for e
j
i with the purpose of preserving the length of local in-

tervals and avoiding an avalanche-like propagation of cor-

rections [3]. Usually, γ
j
i is kept less than 1 minus the maxi-

mal drift of the clocks. To determine the exact value for γ
j
i ,

however, a global view of the trace data is needed, which is

too expensive to establish in our parallel scheme as global

communication would be required for every single event.

Instead, we approximate a suitable value for γ by perform-

ing multiple passes of forward replay through the trace data

until the maximum error is below a predefined threshold. In

practice, more than one pass is seldom needed.

Backward amortization. The purpose of the backward

amortization phase is to smooth jump discontinuities intro-

duced during the forward amortization by slowly building

up the ascension to the jump. This is achieved by apply-

ing a process-local linear correction to the interval immedi-

ately preceding the jump. However, to preserve the clock

condition, the algorithm must not advance the timestamp of

any send event located in this interval farther than that of

the matching receive event (minus the minimum message

latency), leading to the piecewise linear interpolation men-

tioned earlier. A backward replay is needed to determine

these upper limits. While replaying the communication

backward, we store with each logical send event the times-

tamp of the matching receive event after forward amortiza-

tion. With this information available, an appropriate piece-

wise linear interpolation function can be calculated for the

amortization interval behind every receive event shifted dur-

ing the forward replay. Note that during the backward amor-

tization the roles of sender and receiver are reversed: the

timestamp of a receive event must be available at the pro-

cess of the matching send event. In addition to what has

already been stated in our initial design [3], the backward

amortization must be performed as a backward replay start-

ing at the end of the trace with communication proceeding

in backward direction to avoid the danger of deadlocks.

Given that most MPI implementations use binomial

tree algorithms to perform their collective operations, our

replay-based approach reduces the communication com-

plexity automatically to O(log N). Moreover, the stepwise

parallel replay during the backward amortization phase can,

in theory, be replaced by a single collective operation per

communicator for the entire trace, but would impose im-

practical memory requirements. For the actual operations

used during both replay phases and the timestamps being

exchanged, please refer to [3].

5 Experimental Evaluation

Here we evaluate the scalability of the parallel controlled

logical clock algorithm and also give evidence of the fre-

216

quency and extent of clock condition violations in event

traces of realistic MPI applications. For our experiments,

we used the following three platforms:

MareNostrum consists of 2560 JS21 blade computing

nodes, each with 2 dual-core IBM 64-bit PowerPC

970MP processors running at 2.3 GHz. The measured

MPI inter-node latency was 7.7µs, the measured MPI

intra-node latency was 1.3µs.

JUMP consists of 41 IBM p690 nodes, each with 32

Power4+ processors running at 1.7 GHz. The mea-

sured MPI inter-node latency of 4.5µs, the measured

MPI intra-node latency was 3.7µs.

CACAU consists of 200 compute nodes with 400 Intel

Xeon EM64T CPU’s running at 3.2GHz. The measured

MPI inter-node latency was 4.7µs, the measured MPI

intra-node latency was 1.0µs.

The first application we tested was the MPI version of

the ASC SMG2000 benchmark, a parallel semi-coarsening

multigrid solver that uses a complex communication pat-

tern and performs a large number of non-nearest-neighbor

point-to-point communication operations. Applying a weak

scaling strategy, a fixed 16×16×8 problem size per process

with five solver iterations was configured.

Table 1. Average and maximum errors of mes-
sage events in reversed order.

Platform Avg. error [µs] Max. error [µs]

MareNostrum 32 323

Cacau 32 186

While linear interpolation can remove most of the clock

condition violations in traces of short runs, it is usually in-

sufficient for longer runs. We therefore emulated a longer

run by inserting sleep statements immediately before and

after the main computational phase so that it was carried out

ten minutes after initialization and ten minutes before final-

ization. This corresponds to a scenario in which only dis-

tinct intervals of a longer run are traced with tracing being

switched off in between. Since full traces of long running

application may consume a prohibitive amount of storage

space, the “partial” tracing emulated here mimics the rec-

ommended practice of tracing only pivotal points that war-

rant a more detailed analysis. For our purposes, the artificial

chronological distance to the offset measurements on either

end of the run adjusted the interpolation interval to roughly

twenty minutes execution time. However, with many realis-

tic codes running for hours, this can still be regarded as an

optimistic assumption. Compared to true partial tracing of

a longer SMG2000 run, our method had the advantage that

the total runtime including the actual computational activity

and therefore the distance between the two offset measure-

ments was roughly the same for all configurations.

64

(2.8 M)
128

(6.8 M)
256

(16.0 M)
512

(37.9 M)
1024

(90.5 M)

reversed

violations

violations-clc

corrections

30.77% 31.31%

22.29%
20.90%

40.69%

8.60%

12.79%

7.18%
6.52%

12.51%

2.78%
2.24%

1.81%
1.67% 2.26%0.97% 1.54%

0.72%
0.93%

1.32%

processes

(# messages)

(a) MareNostrum.

32

(1.1 M)
64

(2.8 M) 128

(6.8 M)

reversed

violations

violations-clc

corrections

39.26%

29.31%

32.84%

20.38%

13.91%
16.72%

7.42%

6.01%

3.13%

6.19%

4.23%

2.25%

processes

(# messages)

(b) Cacau.

Figure 3. Percentage of logical messages
with the order of send and receive events

being reversed, of logical messages with
direct clock condition violations, of logical

messages with clock condition violations de-

tected by the CLC algorithm, and of event
timings modified by the CLC algorithm.

Figure 3 shows the frequency of clock condition vio-

lations on MareNostrum and Cacau for a range of scales.

Since the number of violations varies between runs, the

numbers represent averages across three measurements for

each configuration. The numbers show the percentage of

messages with the order of send and receive events being

217

reversed in the original trace, of messages with clock con-

dition violations (trecv < tsend + lmin) in the original trace,

of messages with clock condition violations detected by the

CLC algorithm, and of event timings modified by the CLC

algorithm. We also counted logical messages that can be

derived by mapping collective communication onto point-

to-point semantics. When visualized, messages with the or-

der of send and receive events being reversed seem to flow

backward in time. The violations detected by the CLC algo-

rithms also include those that appear correct in the original

trace, but turn into violations after preceding violations have

been amortized and therefore require correction as well. On

MareNostrum, around 1% of the messages flow backward

in time, while on Cacau the percentage ranges between 2
and 6%. Higher latencies on MareNostrum offer a potential

explanation for the smaller number of violations detected

on this system because higher latencies naturally insert a

larger temporal distance between send and receive events of

the same message. As can be observed, a smaller number

of inconsistent messages usually implies a larger number

of corrections during amortization. Although the number

of inconsistent messages on Cacau seems to decrease with

growing numbers of processes, the results on MareNostrum

do not confirm a clear correlation between the two factors.

Table 1 lists the average and maximum displacement errors

of message events in backward order, as seen in the original

trace.

0

10

20

30

40

50

60

70

80

90

100

64 128 256 512 1024

number of processes

w
a
ll
 c

lo
c
k
 t

im
e

 [
s
]

SMG2000 benchmark [s]

total analysis including I/O [s]

timestamp synchronization [s]

pattern analysis [s]

Figure 4. Scalability of parallel timestamp

synchronization on MareNostrum.

According to Figure 4, the parallel timestamp synchro-

nization, the SCALASCA pattern search, and the execution

time of SMG2000 itself exhibit roughly equivalent scaling

behavior - a result of the replay-based nature of the two

analysis mechanisms and the communication-bound per-

formance characteristics of SMG2000. The fact that the

total time needed by the integrated SCALASCA analysis

(synchronization and pattern search) including loading the

traces grows more steeply suggests that I/O will increas-

ingly dominate the overall behavior beyond 1024 processes,

rendering the additional cost of the synchronization negligi-

ble.

The second application we investigated was Meta-

trace [12], a multi-physics application based on MPI that

simulates the spread of pollutants in groundwater. Meta-

trace combines two submodels, one to calculate the flow

field of the groundwater and another to track individual par-

ticles in the precalculated flow field. Both models occupy

disjoint subsets of the processors assigned to the application

as a whole. Using Metatrace we demonstrate how clock

condition violations can adversely affect the trace analysis

and how the situation can be improved using our algorithm.

Figure 5. Time-line visualization of a mes-
sage exchange in backward direction.

We ran the application with 64 processes on JUMP. Fig-

ure 5 contains the VAMPIR time line visualization of the

original trace, showing two processes exchanging a mes-

sage in backward direction. Without reading the names of

the two communication operations, the user would most

likely confuse sender and receiver. After applying our al-

gorithm, all messages flow in the correct direction.

(a) Non-synchronized.

(b) Synchronized.

Figure 6. SCALASCA output for non-

synchronized and synchronized traces.

Additionally, the calculation of wait states performed by

the SCALASCA pattern analysis relies on the correct log-

ical order of message events. In Figure 6(a), the output

of SCALASCA suggests that the difference between the to-

tal time spent in barrier synchronization (i.e., collective

synchronization) and the time spent in the barrier before

and immediately after the actual synchronization has taken

place is negative, which cannot be true. By contrast, Fig-

ure 6(b) shows the SCALASCA output after timestamp syn-

chronization. The result is now consistent.

218

6 Conclusion

The event traces of parallel applications may suffer from

inaccurate timestamps in the absence of synchronized hard-

ware clocks. As a consequence, the analysis of such traces

may yield wrong quantitative results and confuse the user

with messages flowing backward in time. Because linear

offset interpolation based on offset measurements can ac-

count for such deficiencies only for very short runs, we

have designed and implemented a parallel algorithm for

the retroactive correction of timestamps based on logical

clocks. Our replay-based implementation scales easily to

more than thousand application processes and shows po-

tential for even larger configurations. The algorithm has

been incorporated into the SCALASCA framework to facili-

tate trace analyses of longer runs on larger cluster systems.

With the ability to produce more accurate traces of long-

running applications, we plan to support selective tracing

of critical intervals in a more automated way based on a

well-defined successive measurement refinement process.

Finally, we want to extend our algorithm to hybrid appli-

cations employing a mix of message passing and shared-

memory parallelism.

Acknowledgment. The authors thankfully acknowledge

the computer resources, technical expertise and assistance

provided by the Barcelona Supercomputing Center. In par-

ticular, we would like to express our gratitude to Judit

Gimenez and Jesus Labarta for their generous support.

References

[1] Scalasca. www.scalasca.org.

[2] O. Babaoǧlu and R. Drummond. (Almost) no cost clock

synchronization. In Proceedings of 7th International Sym-

posium on Fault-Tolerant Computing, pages 42–47. IEEE

Computer Society Press, July 1987.

[3] D. Becker, R. Rabenseifner, and F. Wolf. Timestamp

synchronization for event traces of large-scale message-

passing applications. In Proceedings of the 14th European

PVM/MPI Conference, pages 315–325, Paris, France, Octo-

ber 2007. Springer.

[4] H. Brunst and W. E. Nagel. Scalable performance analysis

of parallel systems: Concepts and experiences. In Proc. of

the Parallel Computing Conference (ParCo), Dresden, Ger-

many, 2003.

[5] A. Chan, W. Gropp, and E. Lusk. Scalable log files for par-

allel program trace data (draft). Technical report, Argonne

National Laboratory, 2000.

[6] F. Cristian. Probabilistic clock synchronization. Distributed

Computing, 3:146–158, 1998. Springer Verlag.

[7] R. Drummond and O. Babaoǧlu. Low-cost clock synchro-

nization. Distributed Computing, 6(4):193–203, July 1993.

[8] A. Duda, G. Harrus, Y. Haddad, and G. Bernard. Estimat-

ing global time in distributed systems. In Proceedings of the

7th International Conference on Distributed Computing Sys-

tems, Berlin, September 21-25, 1987, pages 299–306. IEEE

Computer Society Press, 1987.
[9] T. H. Dunigan. Hypercube clock synchronization. Technical

Report ORNL TM-11744, Oak Ridge National Laboratory,

TN, February 1991.
[10] C. J. Fidge. Timestamps in message-passing systems that

preserve partial ordering. In Proceedings of 11th Australian

Computer Science Conference, pages 56–66, February 1988.
[11] C. J. Fidge. Partial orders for parallel debugging. ACM

SIGPLAN Notices, 24(1):183–194, January 1989.
[12] Forschungszentrum Jülich. Solute Transport in Het-

erogeneous Soil-Aquifer Systems. http://www.fz-

juelich.de/icg/icg-iv/modeling.
[13] M. Geimer, F. Wolf, A. Knüpfer, B. Mohr, and B. J. Wylie. A

parallel trace-data interface for scalable performance analy-

sis. In Proc. of the Workshop on State-of-the-Art in Scien-

tific and Parallel Computing (PARA), volume 4699 of LNCS,

Umeå, Sweden, June 2006. Springer.
[14] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable

parallel trace-based performance analysis. In Proc. 13th Eu-

ropean PVM/MPI Conference, Bonn, Germany, September

2006. Springer.
[15] R. Hofmann. Gemeinsame Zeitskala für lokale Ereignis-

spuren. In B. Walke and O. Spaniol, editors, Messung, Mod-

ellierung und Bewertung von Rechen- und Kommunikation-

ssystemen, 7. GI/ITG-Fachtagung, Aachen, 21.-23. Septem-

ber 1993. Springer-Verlag, Berlin, 1993.
[16] J.-M. Jez´ équel. Building a global time on parallel machines.

In J.-C. Bermond and M. Raynal, editors, Proceedings of

the 3rd International Workshop on Distributed Algorithms,

LNCS 392, pages 136–147. Springer-Verlag, 1989.
[17] L. Lamport. Time, clocks, and the ordering of events

in a distributed system. Communications of the ACM,

21(7):558–565, July 1978.
[18] E. Maillet and C. Tron. On efficiently implementing global

time for performance evaluation on multiprocessor systems.

Journal of Parallel and Distributed Computing, 28:84–93,

1995.
[19] F. Mattern. Virtual time and global states of distributed sys-

tems. In M. Cosnard and P. Quinton, editors, Proceedings

of International Workshop on Parallel and Distributed Al-

gorithms, Chateau de Bonas, France, October 1988, pages

215–226. Elsevier Science Publishers B. V., Amsterdam,

1989.
[20] D. L. Mills. Network Time Protocol (Version 3). The In-

ternet Engineering Task Force - Network Working Group,

March 1992. RFC 1305.
[21] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and

K. Solchenbach. VAMPIR: Visualization and analysis of

MPI resources. Supercomputer 63, XII(1):69–80, January

1996.
[22] R. Rabenseifner. The controlled logical clock - a global time

for trace based software monitoring of parallel applications

in workstation clusters. In Proc. 5th EUROMICRO Work-

shop on Parallel and Distributed (PDP’97), pages 477–484,

London, UK, January 1997.
[23] R. Rabenseifner. Die geregelte logische Uhr, eine globale

Uhr für die tracebasierte Überwachung paralleler Anwen-

dungen. PhD thesis, Universität Stuttgart, March 2000.

219

