
Verifying Causality between Distant Performance
Phenomena in Large-Scale MPI Applications

Marc-André Hermanns∗, Markus Geimer∗, Felix Wolf∗† and Brian J. N. Wylie∗
∗Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany

†Department of Computer Science, RWTH Aachen University, 52056 Aachen, Germany
email: {m.a.hermanns, m.geimer, f.wolf, b.wylie}@fz-juelich.de

Abstract—In message-passing applications, the temporal or
spatial distance between cause and symptom of a performance
problem constitutes a major difficulty in deriving helpful con-
clusions from performance data. Just knowing the locations of
wait states in the program is often insufficient to understand the
reason for their occurrence. We present a method for verifying
hypotheses on causality between temporally or spatially distant
performance phenomena in message-passing applications without
altering the application itself. The verification is accomplished
by modifying MPI event traces and using them to simulate the
hypothetical message-passing behavior. By performing a parallel
real-time reenactment of the communication to be simulated
using the original execution configuration, we can achieve high
scalability and good predictive accuracy in relation to the
measured behavior. Not relying on a potentially complex model
of the message-passing subsystem, our method is also platform
independent.

I. INTRODUCTION

As a prerequisite for the productive use of state-of-the-art
supercomputers, the HPC community needs powerful and scal-
able performance-diagnosis tools that make the optimization
of parallel applications both more effective and more efficient.
One major difficulty application developers are confronting
with traditional performance tools is that the tools often
diagnose only the symptoms of performance problems but not
necessarily their causes. In fact, the symptoms may appear
(i) much later than the event causing it, (ii) on a different
processor, or (iii) both. The temporal or spatial distance
between cause and symptom constitutes a substantial challenge
in deriving helpful conclusions from a set of performance data.
Especially in message-passing applications, load imbalance
may create wait states at the next synchronization point
following the imbalance. When trying to scale communication-
intensive applications to large processor counts, such wait
states can present severe challenges to achieving good perfor-
mance. Of course, these effects are not necessarily confined
to load imbalance and may be initiated by a large variety
of behaviors, e.g., disparate communication requirements or
coordination activities that are performed only by designated
processes. Additionally, messages may propagate wait states
from one process to the next, creating potentially complex
and far-reaching cause-effect chains. Finally, the individual
contribution of a performance phenomenon to a given wait
state is hard to quantify because wait states may occur as a
superposition of several influences.

In our previous work on the Scalasca toolset [1], we have
shown that wait states in MPI message passing programs can be
identified by searching event traces for characteristic patterns
– even at very large scales. Here, we present a complementary
approach aimed at better understanding their causes. Drawing
from earlier ideas on trace-based performance prediction [2]–
[5], we have designed and implemented a simulator called
SILAS (SImulation of LArge-Scale parallel applications) that
can be used to verify hypotheses on causal connections be-
tween different performance phenomena at very large scales.
The verification is accomplished by modifying event traces
according to a hypothesis and using them to simulate the
hypothetical message-passing behavior. The predicted behav-
ior can then be scanned for wait states to investigate how
the modification would influence (and hopefully reduce) their
occurrence in various parts of the program. Typical questions
the simulation can answer encompass how the performance
behavior changes if a specific computation is more evenly
distributed across the machine or if a specific communication
operation is replaced or eliminated.

As a distinctive property, the simulator performs a parallel
real-time reenactment of the communication to be simulated
using the original execution configuration. Supporting conclu-
sions with respect to the same hardware and an identical num-
ber of processes, our approach offers the following advantages:

• Scalability – Since the simulation is carried out at the
original scale, that is, on as many CPUs as have been used
to generate the traces, processing capabilities (i.e., both
processors and memory) grow proportionally with the
number of application processes, allowing us to simulate
execution configurations with thousands of processes.

• Accuracy and platform independence – The real-time
replay eliminates the need for modeling communica-
tion and, thus, removes a major source of prediction
inaccuracy. At the same time, using the communication
substrate of the target system automatically integrates the
most important platform-specific parameters at basically
no additional per-platform design cost. Porting the simu-
lator to a new system is therefore straightforward.

The simulator has been designed to enhance the trace-
analysis functionality of the Scalasca toolset by adding accu-
rate and scalable predictive capabilities. Our ultimate objective
is to go beyond Scalasca’s present localized wait state diagno-



sis by automatically identifying and evaluating hypotheses on
how the detected wait states can be most effectively removed.
The current prototype of the simulator has been tested and
evaluated on an IBM Blue Gene/L system.

In this article, we give an overview of the simulator and
show how it can be used to accurately predict the effects of
very fine-grained changes in the application behavior. We start
with a review of related work in Section II. In Section III,
we describe the basic workflow of verifying optimization hy-
potheses, outlining the usage of the simulator in the context of
the Scalasca toolset. In Section IV, we illuminate fundamental
design principles, explain key mechanisms, and discuss limita-
tions. Experimental evidence of accurate predictions at larger
scales using both synthetic benchmarks and real applications
is presented in Section V. Finally, in Section VI, we conclude
the paper and outline future directions.

II. RELATED WORK

The principle of trace-driven performance prediction has
already been intensively studied. Several approaches have
addressed questions about performance implications when
varying architectural parameters, such as CPU speed and net-
work latency and bandwidth, and to a lesser extent also when
introducing synthetic perturbations [6] that reflect modified
application-level behavior.

Mendes transformed event traces of message-passing ap-
plications according to a prediction model based on relative
processor speed, optionally differentiated by code section, and
message transfer times previously obtained from benchmark
measurements as a function of the message size [2].

An early performance-analysis toolkit offering trace-based
simulation capabilities as one element of a comprehensive
feature catalog is AIMS [3], which estimates the scalability
of parallel applications by extrapolating previously generated
execution traces to higher numbers of processors and larger
problem sizes. The extrapolated traces can be subsequently
analyzed using standard trace-analysis modules provided by
the toolkit.

Originally motivated by the need to study the sharing of
multiprocessors among multiple applications, DIMEMAS [4]
provides the ability to simulate the execution behavior of
parallel programs based on previously generated event traces.
The underlying prediction model allows the adjustment of
relative processor speeds, network bandwidth and latency
within and across nodes, the number of input and output
links, and the processor scheduling policy. Besides simple
architectural parameter studies, DIMEMAS has been used to
investigate the effects of scaling individual program states
and to develop analytical models as a functions of various
architectural parameters by extrapolating simulations from
multiple traces. While DIMEMAS itself is a sequential tool,
traces used as input for DIMEMAS stem from message-passing
or multithreaded programs.

Predicting application performance for emerging architec-
tures larger than those at one’s disposal is the focus of

BigSim [7]. Based on Charm++, an object-based and message-
driven parallel programming language, BigSim combines an
emulator that is capable of running larger numbers of virtual
processes on a smaller number of physical processors with
a postmortem simulator that uses traces generated during an
emulated run.

Compared to the approaches described above, our work
clearly concentrates on the effects of fine-grained alterations
of application-level behavior with respect to the performance
under an identical execution configuration. Typical use cases
include the balancing of individual functions or the elimina-
tion or replacement of communication operations. The most
important methodological difference is the use of a parallel
real-time replay of the simulated communication at the original
scale, which offers scalability advantages and relieves us of
the burden of modeling the extremely complex communication
infrastructures found on today’s large-scale machines.

III. HYPOTHESIS VERIFICATION

In this section, we describe the typical usage scenario of
our simulator in the context of the Scalasca toolset. Scalasca
has been specifically designed for use on large-scale systems
including IBM Blue Gene and Cray XT, but is also well-suited
for small- and medium-scale HPC platforms. A distinctive
feature of Scalasca is the ability to identify wait states in
event traces of MPI applications with very large numbers of
processes using a parallel replay of the target application’s
communication behavior [1].

Looking for ways to extend our trace analysis toward a
better understanding of the relationship between imbalanced
execution and wait states led to the idea of designing a trace-
based simulator, capable of operating at very large scales and
accurate enough to predict the long-range effects of potential
optimizations on the formation of wait states later in the
program. Since no source-code modification is required, it
should become possible to automatically test a larger number
of optimization hypotheses derived from the original trace data
and rank them according to the expected performance benefit
to identify the most promising ones.

Figure 1 illustrates the role of the simulator in the procedure
of verifying hypotheses on causality between temporally or
spatially distant performance phenomena. The general objec-
tive of the process is to generate wait-state analyses from
both the measured and the predicted behavior and compare
the results to allow conclusions on the effects of hypothetical
program modifications with respect to wait states and other
performance metrics. The workflow starts with running the
instrumented target application in the execution configuration
we want to make predictions for and generating an event trace
consisting of one trace file per application process. During all
subsequent steps, access to the event trace occurs through a
parallel object-oriented high-level API [8]. The primary usage
model of the API assumes a one-to-one mapping between
application and tool processes, that is, for every process of
the target application, one tool process is created that loads
the corresponding trace data into main memory and offers



Core simulation workflow

Instr.
target
application

Measurement

library
Original
trace

Hypothesis
generation

Transformation
specification

Trace
transformation

Modified
trace

Simulation
Simulated

trace

Parallel
wait-state search

Wait-state
report

Difference
operator

Sim. wait-state
report

Parallel
wait-state search

Difference
report

Report
browser

Fig. 1. Workflow for verifying optimization hypotheses. Dark rectangles denote programs, light rectangles with the upper right corner turned down denote
files, and light rectangles with rounded corners denote data objects residing in memory. Stacked symbols indicate multiple instances of programs, files, or
data objects running or being processed in parallel. The target application generating the event trace is the entry stage of the workflow. Judging the difference
between normal execution and the predicted outcome of the optimization displayed in the report explorer is the final stage.

random access to individual events. Data exchange among tool
processes is accomplished via MPI communication.

A hypothesis includes the specification of a trace transfor-
mation, which may prescribe the adjustment of event time-
stamps, the deletion of existing events, or the insertion of new
events to model changes in the application’s source code. As
already pointed out, our ultimate objective is the automatic
derivation of suitable hypotheses from the original trace data,
for example, after identifying local or global load imbalances
or other disparities among application processes (shown in
Figure 1 using dashed lines). Currently, a set of parameterized
standard transformations including the scaling of functions or
the elimination of messages can be specified via a configu-
ration file and provided as input to the trace-transformation
stage. Arbitrary transformations can be implemented as hand-
written programs utilizing the aforementioned trace-access
API, which has been extended for this purpose by adding an
interface to modify the trace data.

After the transformation has been applied, the simulator
performs a parallel real-time replay of the events stored in the
trace. Computation intervals are simulated simply by elapsing
the time in between using busy wait, whereas communications
are simulated by reenacting the communication operations
recorded in the trace. Thus, the time of a communication is
determined by the time needed to execute the correspond-
ing MPI call under modified conditions. As the simulation
progresses, event timestamps are adjusted to reflect the time
elapsed since simulation start. Obviously, keeping all the trace
data in memory is an essential prerequisite for performing the
simulation in real time because reading the trace data from file
in the course of the replay can severely compromise simulation
accuracy unless such interruptions are appropriately accounted
for.

Finally, a wait-state search is performed on both the original
and the simulated event trace, classifying and quantifying
all instances broken down by call path and process. The
results of the two analyses are subtracted using a difference
operator [9] defined over the set of potential search outputs.

For every type of wait state, the operator essentially calculates
the element-wise difference between corresponding (call path,
process) matrices, taking into account that the simulated run
may exhibit call paths not present in the original run and
vice versa. The difference data set can be visually explored to
assess the changes the modified behavior has brought about,
in particular with respect to the reduction or migration of wait
states. Propagating the effects of changes starting from the
point of their injection onwards through the entire execution
and also carrying influences over to remote processes, our
simulator allows the verification of causal connections between
temporally or spatially distant performance phenomena within
the confidence limits our simulator offers.

IV. REPLAY-BASED SIMULATION

In this section, we examine the core simulation workflow
(shaded area in Figure 1) in more detail. Using the simple
example depicted in Figure 2, we illustrate the two elementary
steps of trace transformation and simulation. We explain
fundamental design principles of the simulator and discuss
techniques applied to ensure satisfactory simulation accuracy.

A. Trace Transformation

An event trace is an abstract representation of execution
behavior codified in terms of events. Every event includes a
timestamp and additional information related to the action it
describes. The event model underlying our approach specifies
the following event types:

• Entering and exiting code regions. The region and the
call path are specified as event attributes.

• Sending and receiving messages. Message tag, commu-
nicator, and size are specified as event attributes.

• Exiting collective communication operations. This special
exit event carries event attributes specifying the commu-
nicator, the amount of data sent and received, and the
root process if applicable.

MPI point-to-point operations appear as either a send or a
receive event enclosed by enter and exit events marking begin



and end of the MPI call, whereas MPI collective operations
appear as a set of enter / collective exit pairs (one pair for
each participating process). Our event model currently ignores
other types of communication, such as RMA, and file I/O.

At a lower level, the event trace can be modified by altering
event timings, deleting existing events, inserting new events,
and otherwise changing arbitrary event attributes relevant
to the replay. Since all events carry absolute timestamps,
the modification of a timestamp may necessitate modifying
the timestamps of subsequent events. Modifying the end
times of communication operations is not necessary because
these times will be “measured” during the simulation, as
we will see in Section IV-B. As a preliminary model of a
higher-level mechanism, we have implemented a few sample
transformations, such as scaling regions or balancing regions
among processes both globally and on a per-instance basis.
Further transformations, such as substituting communication
operations or modifying message parameters, will be added
as we gain more experience with application test cases. The
use of a higher-level mechanism, which is currently accessible
via a configuration file supplied as input to the simulator, has
the advantage that consistency constraints ensuring the logical
integrity of the trace (e.g., avoiding dangling messages sent
without matching receive event) can be more easily enforced.

Figure 2a shows an event trace generated from two MPI
processes. After executing the functions foo() and bar() in
a row, both processes engage in two message communications
via matching pairs of MPI_Send() and MPI_Recv().
Whereas the first time the message is sent from A to B, the
second time the message is sent in the opposite direction.
Apparently, function foo() exhibits an imbalance because
process B spends less time in foo() than process A does.
Function bar(), in contrast, is entirely balanced. The imbal-
ance in foo() indirectly causes process B to wait for the
message sent by A during the first communication, a situation
also known as Late Sender. No wait state can be observed
during the the second communication.

Our obvious hypothesis is that the wait state in the first
MPI_Recv() can be removed by balancing function foo()
with expected benefits for the overall performance. Balancing
foo() during trace transformation yields the trace shown in
Figure 2b, with the timestamps of events e2 and e12 being
modified and the timestamps of all subsequent events adjusted
accordingly. Of course, the lengths of the communication
intervals now seem distorted because the MPI calls are simply
shifted to the left or to the right without accounting for changes
that would occur if the MPI calls were carried out under these
new conditions. Note that the receive event of process A (e9)
now happens before the matching send event (e19), violating
the causal event order. The task of rectifying this distortion is
left to the actual simulation.

B. Simulation

As event traces model only a very restricted view of the
application behavior, the simulator faces the challenge of
having to approximate both computation and communication

time

B

A

pr
oc

es
se

s

barfoo

barfoo Send

Recv Send

Recv

waiting time

imbalance

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(a) Original trace where an unbalanced execution of foo() causes a Late
Sender situation (receiver has to wait for the corresponding sender) during
the first message exchange.

time

B

A

pr
oc

es
se

s

barfoo

barfoo Send

Recv Send

Recv1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(b) Balancing region foo() during trace transformation modifies all subse-
quent timestamps to preserve temporal offsets.

time

B

A

pr
oc

es
se

s

barfoo

barfoo Send

Recv Send

Recv

time saved

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(c) The replay-based simulation measures all timestamps while reenacting the
application behavior, thus, adjusting the communication operations to their
predicted length.

Fig. 2. Original event trace (a), event trace after trace transformation (b),
and simulated event trace (c). Circles denote enter and exit events, squares
denote send and receive events.

accurately enough to produce realistic event timings in the
output trace. Because input and output of the simulator are
on the same abstraction level, our primary focus is the length
of intervals between events but not necessarily what happens
inside.

The general principle of the simulation is to traverse the
event trace in parallel, each simulation process being responsi-
ble for a different application process, whose trace data resides
in the memory of the simulation process. During the traversal,
each simulation process examines the events assigned to it in
chronological order and takes different actions depending on
the type of the event and its associated interval. The traversal
is performed in real time, that is, an event is reached at
the time it is supposed to occur during the simulated run.
For the purpose of the simulation, we regard everything that
occurs outside a communication operation as computation.
As a general rule, computation intervals are simply elapsed,
whereas communication intervals are filled by reenacting the
corresponding communication operation. In the course of the
simulation, timestamps are successively changed to simulated
time.

a) Computation: A computation interval is simulated by
elapsing the corresponding time span, whether it is still the
original one or whether it has been modified during trace
transformation. This is accomplished by calling a wait func-
tion, supplying the requested time interval as an argument to
a simple busy wait, implemented using highly-accurate timers
available on the target system. We have found this to be a
portable solution, as the timer functionality is already provided
by the Scalasca infrastructure in a platform-independent way.

b) Communication: To accurately replay the communi-
cation, we use the communication operations specified in the



modified event trace with identical send and receive buffer
sizes. Since the data type is not recorded in the trace, we
always transfer arrays of type MPI_BYTE. The current event
model used by Scalasca already provides enough information
to simulate most blocking MPI point-to-point and collective
operations. Extensions to cover a wider range of operations
including non-blocking communications that will be sufficient
to support most of today’s MPI codes are straightforward
and already in progress. The clock value after performing
a communication operation determines the operation’s exit
timestamp, whereas the length of the preceding computation
interval determines the operation’s enter timestamp. Emulating
the way typical PMPI wrapper functions are implemented, send
and receive timestamps correspond to the clock values before
performing a send operation or after performing a receive
operation, respectively.

Figure 2c shows the simulated trace based on the assump-
tion that function foo() can be perfectly balanced. Since
events e5 and e15 now occur simultaneously, the waiting time
inside the first receive operation disappears, moving events
e7 and e17 to the same position on the time axis. As a
consequence, both processes enter the second communication
at the same time (e8 and e18), correcting the causality violation
still visible in 2b. As a net result, our simulation predicts that
balancing function foo() reduces the overall execution time
by the time indicated in the diagram. Note that the simulta-
neous completion of matching communication operations has
only been chosen to keep the example simple and does not
represent an inherent assumption of our simulator. Of course,
the communication reenactment would account for potential
completion offsets occurring under real conditions.

c) Small intervals: Because the simulation is performed
in real time, one potential source of inaccuracy in our approach
is the simulation of small intervals – especially of those that
are smaller than the resolution of our wait function. Every call
to this routine incurs a certain overhead, as it requires querying
the system timer at least once. It is therefore preferable to
reduce the granularity of the time measurements and make
the time spans spent waiting as long as possible. For this
reason, adjacent computation intervals are grouped together in
a preprocessing step and later simulated in one chunk. After
the replay, the timestamps of events delimiting individual parts
of this super-interval are readjusted according to their relative
distance. Small intervals between consecutive communication
calls that cannot be grouped together are approximated to
avoid the overhead of calling the timer.

C. Limitations

Currently, our simulator is not capable of correctly re-
playing non-blocking MPI point-to-point communication, as
information on communication requests is not yet properly
recorded in the trace data. Likewise, the non-determinism ex-
pressed in wildcard receives using MPI_ANY_SOURCE and/or
MPI_ANY_TAG is not retained. Instead, the replay uses source
and tag information identified during trace acquisition, thus,
restricting the order in which messages are received during

the simulation to the order previously observed. However, the
required information can in principle be recorded in event
traces to correctly model these two aspects. An appropriate
extension of the event model is currently being pursued.

MPI collective operations transferring a different amount
of data per process such as MPI_Gatherv(), can only
be approximated using their less specific counterparts, as
space requirements only allow us to record the aggregate
amount of data sent and received for these routines. Also,
our current approach is oblivious of MPI data types, which
may misrepresent the computational overhead associated with
reduction operations. Moreover, due to large variations in file
system performance usually observed, we found replaying file
I/O to offer little predictive value. Instead, file I/O is treated
in the same manner as computation intervals are, that is, it
is simulated using the busy wait function. Finally, we are
aware that just spinning during computation intervals ignores
potential interactions between processes through the memory
subsystem. By shifting the relative time at which concurrent
memory accesses of processes co-located on the same SMP
node take place, the overall memory bandwidth requirements
may change. It should be noted, however, that most of these
issues reach far beyond the fidelity of analytical approaches
our method can be compared to.

V. EXAMPLES

In this section, we report experiences gained so far with our
simulator using both synthetic benchmarks, where the code
can be more easily modified to reconstruct the hypothetical
behavior in reality, and more complex real-world applications.
After validating the overall accuracy of the simulation using
unmodified trace data, we verified optimization hypotheses
related to load balancing and improved communication behav-
ior. All experiments were performed on the 8-rack IBM Blue
Gene/L system JUBL at the Jülich Supercomputing Centre in
coprocessor mode. The numbers reported always refer to the
accumulated execution time across all processes.

A. Identity Simulation

One way of validating the overall simulation accuracy is to
perform an identity simulation, that is, replaying a recorded
event trace without applying any prior transformation, and
comparing the predicted to the original behavior. For this
purpose, we conducted measurements with the MPI version of
the ASC SWEEP3D benchmark code [10] at a range of scales
from 32 to 4,096 processes. The application was configured
to run for a few minutes, with the problem size per process
being roughly constant (i.e., weak scaling).

In our experiments, the relative deviation of the overall
execution time predicted by the simulator from the execu-
tion time measured during an actual run was rather small
and never exceeded 0.6%. As positive and negative errors
occurring in different parts of the program may compensate
each other, we added the absolute values of individual errors
across all (call path, process) combinations. In relation to
the total execution time, this sum was less than 0.8% in



time

D

C

B

A
pr

oc
es

se
s

barfoo Allreduce

barfoo Allreduce

barfoo Allreduce

barfoo Allreduce

imbalance

waiting time

(a) LB-COLL. Load imbalance in function foo() induces
wait states at the next synchronizing collective communication.
White circles with black borders denote collective exit events.

time

D

C

B

A

pr
oc

es
se

s

bar barfoo

bar barfoo

bar barfoo

bar barfoo

Send Send

Send Recv

Recv Send

Recv Recv

imbalance

imbalance

waiting time

waiting time

(b) LB-P2P. Load imbalance between even and odd ranks in function foo() induces
wait states at the next point-to-point communication operation between pairs of even
and odd ranks.

Fig. 3. One iteration of each of the two synthetic examples LB-COLL and LB-P2P, illustrating the long-range effects of load imbalance in function foo().

all configurations, demonstrating that a reasonable level of
accuracy was sustained throughout the entire program. The
instrumentation overhead created during trace acquisition was
negligible for all configurations.

B. Load Balancing

Load imbalance is a common source of wait states in
message-passing applications. Here, we present two synthetic
benchmark programs with wait states being indirectly induced
by load imbalance, propagating to the affected communication
across a longer range of execution time through a phase
of balanced behavior (Figure 3). Using these two examples,
we demonstrate our simulator’s ability to accurately predict
the reduction of waiting time after removing the imbalance,
thus verifying a causal connection between these two distant
performance phenomena.

The first example is called LB-COLL and generates a Wait
at N×N inefficiency pattern, where a load imbalance induces
waiting times at the next synchronizing collective commu-
nication. Figure 3a shows one possible incarnation of this
pattern, as it appears in our example. In this program, a
sequence of three function calls is executed inside a loop of
100 iterations. The first routine is called foo(), emulating a
load imbalance by making the execution time dependent on
the rank number. The last function call in each iteration is
MPI_Allreduce(), implicitly synchronizing all processes
involved due to the all-to-all character of the communication.
To show the long-range effects of the perturbation introduced
by the imbalance, a routine bar() is executed in between,
taking the same amount of time for each process.

The second example is called LB-P2P and generates a
Late Sender inefficiency pattern, as depicted in Figure 3b.
Load imbalance between processes with odd and even rank
numbers causes processes A and C to wait in a later point-to-
point receive operation. In this more complex case, not only
computational phases (i.e., calls to bar()) appear between
cause and symptom of the imbalance, but also additional com-
munications involving other combinations of processes. Again,
100 iterations of the illustrated behavior were performed.

In both cases, the simulator was used to verify the hypothe-
sis that the imbalance in function foo() is mainly responsible
for the later formation of wait states and that balancing it
would substantially contribute to their reduction. To validate
the accuracy of our prediction, simulated executions were

compared to measurements with a version of the program
that had been previously modified according to our hypothesis.
Like in the previous case, the experiments were performed on
a range of scales from 32 to 4,096 processes. In relation to the
results obtained for the identity simulation of SWEEP3D, the
relative deviation of the predicted from the measured execution
time was even smaller for both examples (in the order of
0.002%, i.e., showing only measurement noise). Contrasting
the trace-analysis results of the original runs with the results
of the simulated optimized runs using the difference operator
introduced in Section III revealed that the simulated balancing
of function foo() would eliminate the majority of the Late
Sender pattern instances, as was expected. This result was
confirmed by the measured optimized runs.

C. Altering Communication Behavior
XNS [11], a computational fluid dynamics application based

on finite-element techniques on irregular three-dimensional
meshes, serves as an example for a very substantial alteration
of communication behavior. The code consists of roughly
45,000 lines of mixed Fortran and C in more than 100
files and has already been subject to performance analysis
and subsequent optimization using the Scalasca toolset [12].
During this work, the unnecessary use of zero-sized point-
to-point message transfers has been identified as a major
scalability bottleneck. With respect to our simulation approach,
this application example was especially interesting as it not
only allowed us to show the contribution of a single perfor-
mance problem to the formation of wait states in point-to-point
communication, but also the accurate prediction of secondary
effects, such as the migration of wait states after eliminating
the cause of their initial materialization.

The basis of our investigation was an event trace acquired
for one simulation time step during a run with 1,024 processes
using a version of the program where the MPI_Sendrecv()
calls responsible for the zero-sized messages had already been
replaced with pairs of individual calls to MPI_Send() and
MPI_Recv(). In future work, we plan to utilize the trace
modification API outlined in Section IV-A to perform this step
automatically during the trace-transformation stage without
touching the source code itself. According to wait-state search
results obtained for the original trace, the application suffered
from a high fraction of time spent in MPI (59.9%) with roughly
half of it attributable to Late Sender wait states.



Metric Orig. Hand-opt. ∆ Simul. ∆
Total 100.0 50.6 -49.4 53.1 -46.9
MPI 59.9 16.9 -43.0 19.4 -40.9
Point-to-Point 54.2 8.6 -45.6 11.2 -43.0
Late Sender 30.6 5.7 -24.9 8.0 -22.6
Wait at Barrier 5.1 7.7 +2.6 7.7 +2.6

TABLE I
COMPARISON OF THE ORIGINAL, THE HAND-OPTIMIZED, AND THE

SIMULATED APPLICATION BEHAVIOR OF XNS. ALL NUMBERS REPRESENT
PERCENTAGES OF THE ORIGINAL EXECUTION TIME.

Our transformation consisted of eliminating all transfers of
zero-sized messages occurring inside two problematic routines
identified during an earlier trace analysis to assess their
contribution to the wait states observed. Although conceptually
simple, applying the transformation meant eliminating more
than 1.2 billion messages from the trace, which corresponds
to more than 90% of the total number of message transfers.

Table I compares the execution behavior of the time-step
loop of the original XNS version, a hand-optimized version,
and the simulated optimization with respect to different time
metrics. All numbers represent percentages of the original
execution time. The predicted overall improvement was 46.9%
compared to a measured improvement of 49.4%. In addition,
the simulator predicts not only significant savings with respect
to Late Sender wait states (22.6%), but also the migration of
a smaller amount of waiting time to barrier synchronizations
(2.6%) as a secondary effect. The obviously small deviations
from the hand-optimized version mostly originated from the
Late Sender metric, with the actual saving exceeding the
prediction by about 2% of the original execution time. Thus,
our simulator was able to establish a causal relationship
between zero-sized messages and Late Sender wait states as
well as to foresee a small amount of wait-state migration
after their removal with reasonable accuracy. Note that the
reduction in non-MPI time (difference between Total and MPI)
observable in both the hand-optimized and the simulated run
can be explained with the fact that a smaller number of MPI
calls causes less instrumentation overhead.

VI. CONCLUSION

We have presented a novel approach to verifying hypotheses
on causal connections between distant performance phenom-
ena in MPI message-passing applications without altering their
source code. Using trace-based simulation in the original
execution configuration, we can accurately assess long-range
effects of a variety of behaviors related to computation and
communication. Since the simulation correctly propagates the
influence expressed by an optimization transformation even
across process boundaries via message communication, the
initial cause and the final symptom may also be separated
along the space dimension. The methodological key difference
to earlier approaches is a parallel real-time reenactment of the
simulated communication at the original scale, allowing the
efficient simulation of MPI applications with thousands of pro-
cesses. Moreover, since the reenactment eliminates the need to
model the extremely complex communication infrastructures
found on today’s large-scale machines, our approach is also

platform independent. Accurate predictions were shown for
examples of increasing complexity with up to 4,096 processes.

As a next step, we plan to incorporate support for non-
blocking communication and wildcard receive operations, as
anticipated in Section IV-C, and evaluate our simulator with
a broader range of realistic codes. As our ultimate goal
is automatically identifying suitable optimization hypotheses,
the simulator is intended to form the core component of
a more universal tuning framework, where it will be used
to verify optimization hypotheses derived from the original
trace data. For this purpose, our future work will include the
development of new trace-analysis algorithms with emphasis
on the characterization of load and communication imbalance.

ACKNOWLEDGMENT

This work has been supported by the Helmholtz Association
of German Research Centers under Grants No. VH-NG-118
and No. VH-VI-228 (Virtual Institute - High Productivity
Supercomputing).

REFERENCES

[1] M. Geimer, F. Wolf, B. Wylie, and B. Mohr, “Scalable parallel trace-
based performance analysis,” in Proc. of the 13th European Paral-
lel Virtual Machine and Message Passing Interface Conference (Eu-
roPVM/MPI), ser. Lecture Notes in Computer Science, vol. 4192. Bonn,
Germany: Springer, September 2006, pp. 303–312.

[2] C. Mendes, “Performance prediction by trace transformation,” in Proc.
of the 5th Brazilian Symposium on Computer Architecture, Florianopolis,
September 1993.

[3] J. Yan, S. Sarukkai, and P. Mehra, “Performance Measurement, Visu-
alization and Modeling of Parallel and Distributed Programs using the
AIMS Toolkit,” Software – Practice and Experience, vol. 25, no. 4, pp.
429–461, 1995.

[4] G. Rodriguez, R. Badia, and J. Labarta, “Generation of simple analytical
models for message passing applications,” in Proc. of the European
Conference on Parallel Computing (Euro-Par), ser. Lecture Notes in
Computer Science, vol. 3149. Pisa, Italy: Springer, August - September
2004.

[5] G. Zheng, G. Kakulapati, and L. V. Kalé, “BigSim: A parallel simulator
for performance prediction of extremely large parallel machines,” in
Proc. of the 18th International Parallel and Distributed Processing
Symposium (IPDPS). Santa Fe, New Mexico: IEEE Press, April 2004.

[6] G. Lyon, R. Snelick, and R. Kacker, “Synthetic-perturbation tuning of
MIMD programs,” The Journal of Supercomputing, vol. 8, pp. 5–28,
1994.

[7] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé, “Simulation-
based performance prediction for large parallel machines,” International
Journal of Parallel Programming, vol. 33, no. 2-3, June 2005.

[8] M. Geimer, F. Wolf, A. Knüpfer, B. Mohr, and B. Wylie, “A par-
allel trace-data interface for scalable performance analysis,” in Proc.
Workshop on State-of-the-Art in Scientific and Parallel Computing
(PARA, Umeå, Sweden), ser. Lecture Notes in Computer Science 4699.
Springer, June 2006, pp. 398–408.

[9] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore, “An algebra for
cross-experiment performance analysis,” in Proc. of the International
Conference on Parallel Processing (ICPP). Montreal, Canada: IEEE
Society, August 2004, pp. 63–72.

[10] The ASC SWEEP3D Benchmark Code, Advanced Simulation and Com-
puting Program (ASC), https://asc.llnl.gov/.

[11] M. Behr, D. Arora, O. Coronado, and M. Pasquali, “Models and finite
element techniques for blood flow simulation,” International Journal of
Computational Fluid Dynamics, vol. 20, pp. 175–181, 2006.

[12] B. Wylie, M. Geimer, M. Nicolai, and M. Probst, “Performance analysis
and tuning of the XNS CFD solver on BlueGene/L,” in Proc. of the
14th European Parallel Virtual Machine and Message Passing Interface
Conference (EuroPVM/MPI), ser. Lecture Notes in Computer Science,
vol. 4757. Paris, France: Springer, September 2007, pp. 107–116.


