
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024 1551

Malleability in Modern HPC Systems: Current
Experiences, Challenges, and Future Opportunities

Ahmad Tarraf , Martin Schreiber , Alberto Cascajo , Jean-Baptiste Besnard , Marc-André Vef ,
Dominik Huber , Sonja Happ , André Brinkmann , David E. Singh , Hans-Christian Hoppe ,
Alberto Miranda , Antonio J. Peña , Rui Machado , Marta Garcia-Gasulla , Martin Schulz ,

Paul Carpenter , Simon Pickartz , Tiberiu Rotaru , Sergio Iserte , Victor Lopez , Jorge Ejarque ,
Heena Sirwani , Jesus Carretero , and Felix Wolf

Abstract—With the increase of complex scientific simulations
driven by workflows and heterogeneous workload profiles, man-
aging system resources effectively is essential for improving per-
formance and system throughput, especially due to trends like
heterogeneous HPC and deeply integrated systems with on-chip
accelerators. For optimal resource utilization, dynamic resource
allocation can improve productivity across all system and ap-
plication levels, by adapting the applications’ configurations to
the system’s resources. In this context, malleable jobs, which can
change resources at runtime, can increase the system throughput
and resource utilization while bringing various advantages for HPC

Manuscript received 13 September 2023; revised 7 May 2024; accepted
18 May 2024. Date of publication 29 May 2024; date of current version
18 July 2024. This work was supported by the European Commission, the
German Federal Ministry of Education and Research (BMBF), and the Re-
search and Innovation Spanish Ministry (PCI2021-121958 and “NextGen-
eration EU/PRTR”) under the EuroHPC Programmes DEEP-SEA (GA No.
955606 – 16HPC011K – MCIN/AEI/10.13039/501100011033), ADMIRE (GA
No. 956748 – 16HPC006K – PCI2021-121966) Time-X (GA No. 955701 –
16HPC46K), REGALE (GA No. 956560 – 16HPC039K), which receive support
from the European Union’s Horizon 2020 programme and DE, FR, ES, GR, BE,
SE, GB, CH (DEEP-SEA); DE, FR, ES, IT, PL, SE (ADMIRE); BE, FR, DE,
CH (Time-X); and TR, NO, PT, DE (REGALE). As part of the NHR funding,
we further acknowledge the support from BMBF and HMWK. Recommended
for acceptance by A. Sussman. (Corresponding author: Ahmad Tarraf.)

Ahmad Tarraf and Felix Wolf are with the Department of Computer Sci-
ence, Technical University of Darmstadt, 64289 Darmstadt, Germany (e-mail:
ahmad.tarraf@tu-darmstadt.de).

Martin Schreiber is with the IMAG, Université Grenoble Alpes, 38400 Saint-
Martin-d’Hères, France, and also with the Department of Informatics, Technical
University of Munich, 80333 München, Germany.

Alberto Cascajo, David E. Singh, and Jesus Carretero are with the Computer
Science and Engineering Department, University Carlos III of Madrid, 28911
Leganés, Madrid, Spain.

Jean-Baptiste Besnard is with the France Office, ParaTools SAS, 91680
Bruyères-le-Châtel, France.

Marc-André Vef and André Brinkmann are with the Institute of Computer
Science, Johannes Gutenberg University Mainz, 55122 Mainz, Germany.

Dominik Huber and Martin Schulz are with the Department of Informatics,
Technical University of Munich, 80333 München, Germany.

Sonja Happ and Simon Pickartz are with the ParTec AG, 81679 Munich,
Germany.

Hans-Christian Hoppe is with the Jülich Supercomputing Centre,
Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.

Alberto Miranda, Antonio J. Peña, Marta Garcia-Gasulla, Paul Carpenter, Ser-
gio Iserte, Victor Lopez, and Jorge Ejarque are with Barcelona Supercomputing
Center, 08034 Barcelona, Spain.

Rui Machado, Tiberiu Rotaru, and Heena Sirwani are with the High Per-
formance Computing Department, Fraunhofer ITWM, 67663 Kaiserslautern,
Germany.

Digital Object Identifier 10.1109/TPDS.2024.3406764

users (e.g., shorter waiting time). Malleability has received much
attention recently, even though it has been an active research area
for more than two decades. This article presents the state-of-the-art
of malleable implementations in HPC systems, targeting mainly
malleability in compute and I/O resources. Based on our experi-
ences, we state our current concerns and list future opportunities
for research.

Index Terms—Malleability, state-of-the-art, survey, HPC.

I. INTRODUCTION

MALLEABILITY in HPC has been a research topic for
many years [1], [2], [3], [4], [5], [6], [7], [8], [9]. Mal-

leable jobs can be considered the most scheduler-friendly jobs,
as they allow for effective system utilization and throughput.
For example, these jobs can start whenever the minimal re-
quirements are available and expand during their lifetime when
more resources become available. For a domain partitioning
application with adaptive mesh (AMR) [6], for instance, the
problem size of the job can increase or decrease during its
execution and resources added or released accordingly. Mal-
leable jobs can also increase energy efficiency [10], [11] and
reduce average power consumption [12], [13], which makes
these jobs green due to their lower impact on the environment.
By considering platforms with different classes of compute
nodes, energy minimization, and performance-per-watt maxi-
mization as optimization criteria, finding the optimal solution
is not limited to finding the most appropriate number of pro-
cesses but also to determining the classes of compute nodes
that must be used [14], [15]. With the share of greenhouse
gas emissions produced by digital technologies increasing from
2.5% in 2013 to 4% in 2020 and likely 8% by 2025 [16],
malleability can be a game changer, not only for performance
optimization and higher efficiency but also for sustainability
and greener IT. It allows HPC centers to increase their overall
system throughput, while providing them with more flexibility,
e.g., regarding their power consumption. At the same time, mal-
leability also brings benefits for HPC users [17], such as reduced
response times [18], which usually lead to lower turnaround
times [19].

While there are several reasons why malleability should be
used on modern HPC systems, the question remains: Why do

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9174-5598
https://orcid.org/0000-0002-2390-6716
https://orcid.org/0000-0001-5506-1431
https://orcid.org/0000-0001-6500-6786
https://orcid.org/0000-0001-7398-3034
https://orcid.org/0000-0001-9696-9382
https://orcid.org/0000-0002-1858-3641
https://orcid.org/0000-0003-3083-2775
https://orcid.org/0000-0002-8125-0049
https://orcid.org/0009-0001-3546-090X
https://orcid.org/0000-0002-1386-628X
https://orcid.org/0000-0002-3575-4617
https://orcid.org/0009-0009-2759-2302
https://orcid.org/0000-0003-3682-9905
https://orcid.org/0000-0001-9013-435X
https://orcid.org/0000-0002-9392-0521
https://orcid.org/0000-0002-6316-6396
https://orcid.org/0009-0000-8455-5553
https://orcid.org/0000-0003-3654-7924
https://orcid.org/0000-0002-3113-9166
https://orcid.org/0000-0003-4725-5097
https://orcid.org/0000-0002-5629-1957
https://orcid.org/0000-0002-1413-4793
https://orcid.org/0000-0001-6595-3599
mailto:ahmad.tarraf@tu-darmstadt.de

1552 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 1. An example architecture of a malleable HPC system.

modern HPC systems lack malleable implementations? Despite
the long research history, users do not employ malleability tools
and job schedulers in production HPC machines do not exploit
malleability [20]. In this survey, we report the current efforts
and challenges of malleability in HPC based on our experience
across several distinct European projects.

In general, introducing malleability to HPC systems is chal-
lenging, as it requires changes in almost the entire HPC software
stack (see Fig. 1). Systematically approaching this challenge
could facilitate the development of standardized interfaces for
malleability among the involved components. One way is or-
ganizing malleability into multiple layers, defining tasks and
services for each layer of the model, and developing well-defined
interfaces between these layers (e.g., based on the PMIx stan-
dard [21]). Fig. 2 provides an example of such a multi-layer
model.

In accordance with Fig. 2, we structure the first part of
this paper targeting computational malleability. As a start-
ing point, we introduce the terminology in Section II. Sec-
tion III covers malleability from the application perspective
and briefly looks into monitoring and modeling malleable ap-
plications. Section IV examines existing programming mod-
els and their current developments, progress in process and
resource managers, and the interaction between these layers.
Compared to a recent survey [22], which examines several
MPI process malleability solutions and shows possible adap-
tations in user codes, in this paper, we explore malleabil-
ity system-wide, handling current efforts and planned future
extensions.

The second part of this paper (Section V) examines I/O
malleability, focusing on I/O services and storage resources. I/O
malleability offers similar benefits as computational malleability
and can, if combined, complement each other, significantly im-
proving their efficiency. Moreover, both methods share most of
the necessary components (see Fig. 1). Note that other malleable
resources, e.g., by directly targeting network communication or
main memory, could also be beneficial but are out of the scope of
this paper. Finally, based on our experience, we state the major
challenges related to malleability in Section VI and guide future
research in Section VII.

Fig. 2. A multi-layer model of the system software stack on HPC systems
subject to malleability including monitoring.

II. TERMINOLOGY AND CLASSIFICATION

In HPC, malleability refers to the ability of a system or appli-
cation to dynamically adapt its resource usage on demand with-
out necessarily stopping or restarting its activity. More specif-
ically, malleability involves the allocation of resources (e.g.,
CPU, memory, network, and I/O bandwidth) in response to their
availability and changes in the workload. A term often confused
with malleability is dynamism, which refers to the ability of a
system or application to dynamically adapt its behavior or per-
formance to deal with changes in workload, availability of new
resources, and the conditions of the system. A dynamic workload
manager can adapt the resource allocation for different jobs
based on their resource demands and the system’s current status.
Hence, dynamism and malleability are related concepts in HPC.
Malleability can be considered a subcategory of dynamism, as
it allows jobs to adapt themselves to changing conditions at
runtime. In contrast, dynamism is more general, including more
sources of information and mechanisms in the decision-making.
The terms have been widely used over the years to describe
not only jobs but also systems and resources that support such
operations. Considering, e.g., power as a malleable resource,
jobs subject to power capping can be considered malleable.
Thus, we clarify the existing terminology in this section.

A. Job Classification

In HPC, dynamism is essential for optimizing resource uti-
lization and improving system efficiency. However, not all HPC
systems support this aspect. For example, a system that im-
plements a fixed resource allocation for each job is unable to
reconfigure the job even when new resources are available. Thus,
jobs that leverage dynamism make sense only if the system
supports this feature, as the system needs to accommodate job
reconfigurations at runtime.

HPC jobs can be categorized as rigid, moldable, malleable,
or evolving [23]. Rigid jobs are the most basic and common
ones. They have a fixed resource allocation, which remains
constant during their life cycle. There are many reasons why
a job is rigid, including: 1) the nature of the problem (e. g., fixed
domain decomposition), 2) the structure of the algorithm (e.g.,
assigning fixed tasks to nodes), or 3) just for simplicity during
development. The expected execution time is usually provided to
the batch system when submitting the job. Moldable jobs can be
executed with various resource allocations. The user specifies
several acceptable resource configurations besides individual

TARRAF et al.: MALLEABILITY IN MODERN HPC SYSTEMS: CURRENT EXPERIENCES, CHALLENGES, AND FUTURE OPPORTUNITIES 1553

and tentative execution times for each of them. Moldable jobs,
by themselves, do not allow the system to change the allocations
for the jobs; they require a moldable system. If the resource man-
ager and the batch system support these features, they become
more flexible –and complex–, improving resource utilization
compared to rigid platforms.

Malleable and evolving jobs can adapt their resource usage
during runtime. The difference lies in how and when the resource
reconfiguration decision is executed. A job is evolving if the job
decides when and how the resources are reconfigured. Contrary,
a job is malleable if the system makes this decision and the
job just applies it. More specifically, evolving jobs investigate
their resource usage at specific points followed by deciding
the resource allocations. In contrast, for malleable jobs, the
resource manager or the system scheduler requests a change in
the resource allocation depending on the system status, and the
jobs react by reconfiguring themselves. As application resource
requests can be forwarded to the system to be handled by the
platform, for simplicity, we assume evolving jobs are covered
by the same topics as malleable jobs.

As the resources for rigid and moldable jobs are allocated
before the application execution, the allocation is referred to
as static allocation. In contrast, dynamic allocation refers to
expanding or shrinking resources for evolving and malleable
jobs. This paper focuses on topics related to malleable jobs.

B. Malleable Systems and Resources

As dynamism in HPC environments is a system’s ability
to adapt to varying requirements (workloads, resources, etc.),
the environment should support some key features: Dynamic
resource allocation, load balancing, malleability, fault toler-
ance, and heterogeneity. Dynamic resource allocation allows
the system to adapt the resources used by jobs at runtime. The
system typically considers the workload and available resources
to perform these allocations. Supporting this feature provides
additional mechanisms for effective resource usage, increasing
the system’s performance. Load balancing is the system’s ability
to balance the workload across multiple nodes and processors.
As the system can adapt the allocated resources, it should
ensure that each job, node, and processor operates at acceptable
performance levels. To provide dynamic resource allocation and
allow jobs to use these resources at runtime, the system should
support malleability. Dynamic systems can scale the malleable
jobs up and down, enabling them to react to peak loads and low
activity periods of resource usage.

Dynamic systems should be designed to tolerate failures,
i.e., continue operating even when a job or component fails.
However, fault tolerance accounts for new potential sources
of failures, e.g., resource re-allocation and job reconfiguration.
If the first fails, the system might be left in an unstable state,
while if the latter fails, jobs might yield erroneous results, stall,
or end abruptly. Finally, heterogeneity allows the system to
support a wide range of hardware and software. It optimizes
different types of workloads and applications, depending on their
requirements. However, specific hardware and software might
reduce the interoperability between the system and the jobs,

forcing developers to adapt their applications and components
to the platform requirements.

C. Proactive and Reactive Malleability

Based on the decision-making mechanism in dynamic sys-
tems, there are two approaches to deal with resource allocation
and job scheduling. A proactive system can predict and prevent
events before they occur (e.g., potential problems, reconfigu-
rations, interference, and performance degradation). It might
involve predictive analytics and workload modeling to antici-
pate changes in demand and automatically adjust the available
resources to match the changing workload. These systems can
maintain their performance and reliability based on monitoring
techniques, prediction, continuous analysis, and re-schedulings,
however, this increases their complexity. In contrast, a reactive
system responds quickly to events after they occur (e.g., when
a job requests more resources, failures, or network congestion).
The system detects and evaluates the current status of the re-
sources and jobs, and takes a decision based on the implemented
policy (e.g., reduce energy consumption or increase throughput).
This approach requires real-time monitoring and alerts to detect
the events and take appropriate actions. While both systems
have cons and pros, selecting one depends on various factors,
such as specific workload requirements, available resources, and
performance and reliability goals of the system. Yet, systems
that combine both approaches may achieve the best balance
of performance, efficiency, and resilience. Note, we distinguish
between active malleability, where an application investigates
its use of resources at specific points in its code and then
decides on whether and how to change the resource set, and
passive malleability, where a resource manager/scheduler offers
or requests a resource change from an application at an arbitrary
point in its execution, to which the application can react.

III. MALLEABILITY IN HPC APPLICATIONS

On the application level, malleability brings various advan-
tages to application owners and HPC centers (Section III-A).
Moreover, to fully characterize malleable applications, moni-
toring and modeling tools will need to adapt (Section III-B).

A. Applications

Traditionally and as a result of the pre-dominant MPI pro-
gramming model, HPC applications work on a fixed resource set
specified by the user. Overly large resource/time allocations can
reduce the efficiency of the system usage. Smaller allocations
increase execution times and can cause premature termination
and loss of results due to timeouts. If the applications are still
running when the allocation time expires, the system cancels
the job, and important information may be lost. Specifying
realistic resource requests is important for computer centers
and end-users, yet without detailed application knowledge, is
difficult to do.

Modern HPC applications exhibit a high degree of dynamism
aligning with the behavior of the simulated physical processes.
Besides, they can be affected by external constraints such as
dynamic system reconfigurations (e.g., power capping) or global

1554 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

resource contention. Consequently, the ability to steer resources
allocated to an application would be an advantage for both
end-users and system operators. At the heart of this are applica-
tions capable of making effective use of dynamically changing
resources. This can require redistribution of data or tasks to
a changed set of resources, which can be costly operations,
before continuing computation without losing previous com-
pute results. Monitoring solutions, for example, could be used
here to find the right timing for such operations. Applications
supporting advanced forms of checkpoint/restart or dynamic
load balancing [24], [25] are good examples, being massively
parallel and of an iterative nature with prescribed points where
resource changes can be accommodated. Also, certain kinds of
applications, e.g., those based on task farming or parallel-in-time
codes based on the Parareal algorithm [26], can benefit from
malleability without significant code changes.

A malleable solution could benefit end-users by: 1) reduced
time-to-machine, as well as 2) improved time-to-solution and
more efficient use of resources, which 3) preserves the com-
puting time budget. The users only pay for resources their
applications can use efficiently. Compute centers, on the other
hand, could benefit from: 1) reduced resource idling, which
directly 2) increases system utilization and efficiency and pro-
vides flexibility in 3) controlling their power consumption to
stay inside the narrow power corridors they usually have for
large-scale systems. Despite these benefits, a recent survey [17]
shows that only 16% of the examined applications could change
the number of processes dynamically. Interestingly, 37% of
the applications can restart on a different number of processes
from an application checkpoint, which means that they are at
least moldable. This 21% difference could indicate that the
maturity of existing mechanisms for checkpoint/restart and the
resulting benefits drove significantly more applications to tackle
the problem of dynamic data distribution.

Almost twenty years ago, simulations have shown that al-
ready a small percentage of malleable jobs can improve sys-
tem performance [27]. Examples of applications that currently
use malleability in large-scale systems are EpiGraph [28],
WaComm++ [29], MPDATA [11], HPG-Aligner [30], and
LAMMPS [31]. To make an application passively malleable
(see Section II-C), for example, the user-level code must outline
the reconfiguration phase and carefully define data-management
procedures enabling the remapping of the various operands.
Nonetheless, more generic support could, e.g., be devised either
inside PETSc [25] that controls the data or task distribution
of applications or directly through MPI [24], with a set of
extensions for dynamic resources and AMR.

Deciding on resource allocations requires a detailed under-
standing of application behavior and in particular the appli-
cation phases. Often, the achievable parallelism varies over
time according to the transition between phases. Malleability
can serve to adapt allocated resources to the current needs
of the applications, yet the overhead of reconfiguration must
be considered (see Section III-B). In the real world, perfectly
scaling applications and systems do not occur, and the data
redistribution effort can scale differently from the computa-
tion. Capabilities of HPC systems also impact the available
options for adaptive resource changes: shared memory across all

application processes can greatly simplify data redistribution
and reduce its overhead, while the use of shared resources (such
as I/O nodes or subsystems) across different jobs can create
interference and substantial overhead. Moreover, HPC system
resource management must handle the totality of jobs and in
the interest of the compute center usually strives to achieve a
global optimum (e.g., maximum throughput) rather than mini-
mizing each job’s runtime as handled later in Section IV-C. To
support malleable decisions application/system monitoring and
modeling can be used as described in the next section.

B. Monitoring and Modeling

Malleable applications pose specific challenges in terms of
monitoring. First, since these applications can change the num-
ber of processes during their lifespan, the traditional approach
(i.e., process-based monitoring) is insufficient and additional
monitoring capabilities must be devised to track a job’s structure.
Second, runtime dynamics are of paramount importance, as be-
ing dynamic requires diagnosing the need for a resource change
during runtime. Thus, traditional feed-forward tools relying
on post-mortem analysis must be complemented with runtime
monitoring, and monitoring has to become less transitive on
HPC applications.

Job malleability can benefit from performance models deter-
mining the worthiness of a change. These models are built from
historical data, accounting for several job instances, profiles, or
more verbose traces. Each program running on a supercomputer
has a complex performance space, often described as how it
scales. However, evolution in HPC architectures made this space
even more convoluted. Indeed, what was previously a single
number of MPI processes is now a multi-variadic space, ranging
from the number of OpenMP threads versus MPI processes
and the potential availability of accelerators. A dynamic system
changes application parameters to move applications’ config-
urations in the space of their expression on the machine. Per-
formance models could be used to justify malleable decisions.
However, these are difficult to obtain in such a complex space.
Yet, all performance data sources should be leveraged to produce
higher-level performance models.

While the performance analysis of targeted code segments is
common practice for the optimization of an individual problem
or scale, capturing the parametric unfolding of application be-
havior is rare. Still, as Fig. 3 shows, developing such dynamic
application models is crucial to support adaptivity in the dy-
namism workflow. It is the foundation to enable the application
to run in a more optimal configuration, i.e., according to the
available resources, runtime constraints, and possible colloca-
tion dependencies between components. Further, it supports
reconfiguration during the program execution, reacting on the
fly to new restrictions, such as urgent jobs, quality of service
(QoS), or maintenance constraints.

Dynamism is a step towards more efficient computing systems
thanks to a feedback loop between execution configurations
and their resulting performance. Considering the increasing job
complexity going from monolithic jobs to workflows, in-situ
or even ad-hoc services, there is a need to express launch con-
figurations better. Moreover, what is already difficult on the job

TARRAF et al.: MALLEABILITY IN MODERN HPC SYSTEMS: CURRENT EXPERIENCES, CHALLENGES, AND FUTURE OPPORTUNITIES 1555

Fig. 3. Dynamism workflow for improved job configuration.

level is even harder at the machine-wide level, requiring reflexive
cross-job modeling capabilities. Thus, a malleable system must
include a comprehensive monitoring component and infrastruc-
ture, coupled with matching analysis and modeling capabilities,
typically referred to as Online Data Analytics (ODA) – elevating
always-on performance measurements to a first-class citizen in
the supercomputer.

Dynamism requires focusing on a whole machine or even
center, seeing how jobs and systems interact (i.e., system-wide
monitoring), and building a performance model database. This
needs comprehensive and highly scalable infrastructures, pro-
viding continuous monitoring. Further, the focus should exceed
the computing system, including the infrastructure (e.g., power
and cooling) and peripheral systems (e.g., network and I/O).
For shared resources such as I/O, the ability to determine all
the sources of operations is of interest. From an instrumentation
point of view, this precludes the enforcement of some relatively
intrusive forms of instrumentation, such as recompilation or
specialized annotation libraries. The transition to a malleable en-
vironment has to be as easy as possible since many applications
are reluctant to update their codebase. Instrumentation must be
multi-staged, starting from a base of node-level instrumentation
and gathering more information from the collaborating binaries,
e.g., annotated with additional performance hints, for example,
with the Caliper [32] infrastructure. Further, runtimes, such as
the ones for MPI or OpenMP, can directly provide monitoring
information due to their dedicated tool interfaces [33], [34], [35].
For example, MPI is evolving to provide a multi-instrumentation
layer called QMPI [36], enabling concurrent monitoring of the
MPI interface. Thanks to this evolution, always-on monitoring
of MPI is becoming possible, an approach currently limited to
nodes’ status (memory, health, temperature, etc.).

Many centers focus on developing such monitoring infrastruc-
tures, often with the goal of system tracking and tuning. A promi-
nent example, currently deployed on production systems at LRZ
and extended in the projects DEEP-SEA [37] and REGALE [38],
is the Data Center Data Base (DCDB) [39], [40], which is
capable of routinely tracking millions of sensors on large scale
production systems, such as SuperMUC-NG, using technologies
from the IoT space combined with a federation of time series
databases built in top of Cassandra. Similarly, the ADMIRE
project [41] is building an entirely new measurement infrastruc-
ture relying on the Prometheus time-series database (TSDB)
connected to a node-level aggregating push gateway coupled
with LIMITLESS [42] for node-level monitoring and high-
speed spatial reduction based on a tree-based overlay network
(TBON). Although such comprehensive monitoring capabilities
are not yet commonly used in all parallel systems, previous
experiments have demonstrated the usefulness of malleability
at the application level. For instance, the FlexMPI runtime [43]

and TALP [44] collect various performance metrics related to
each MPI call, which can be utilized to develop performance
models and support decision-making on expanding the number
of processes. However, monitoring represents only a fraction
of the challenges involved in supporting dynamic resources.
As we will elaborate in the subsequent sections, a paradigm
shift is necessary in every layer of the computing architecture to
facilitate such novel scenarios.

IV. MALLEABILITY ON HPC SYSTEMS

The software stack of HPC systems consists of several layers
(see Fig. 2) that require adaptations for malleability. These layers
are examined in the following subsections.

A. Programming Models

Application developers use programming models to write
HPC applications. These models need to provide standard-
ized, flexible, and practical interfaces to include malleability
into the application-specific workflow. Originally, malleabil-
ity leveraged advanced checkpoint/restart mechanisms (e.g.,
SCR [2]), or fault tolerance systems for MPI (e.g., ULFM [45])
to implement automatic resizes. It has been a long way with
extensive research from malleability-specific efforts, such as
ReSHAPE [3], Elastic MPI [8], and Adaptive MPI (AMPI)
on top of Charm++’s runtime system [46] as discussed in
Aliaga et al. [22], to approaches currently evolving. Along this
way, the standardization of MPI and PMIx has progressed to
support the integration of malleability features and interfaces
into existing programming models. Table I shows an overview of
the programming model implementations for message passing,
PGAS, and task-based programming discussed here in regard to
their application and system programming interfaces for active
and passive malleability and data migration support.

1) MPI Sessions: The MPI Standard 4.0 introduces the MPI
Sessions model, which promises more resource flexibility by
avoiding the global MPI world communicator and tighter inte-
gration of runtime information. It introduces the concept of MPI
process sets (PSets) as a mechanism to set up communicators
in a more modular and scalable way. PSets can be looked up
in a dictionary with URIs referring to particular sets. Beyond
the mandatorympi://SELF andmpi://WORLD process sets,
the MPI standard allows the definition of additional process sets
before and during the runtime of an MPI application. Malleabil-
ity could be already supported by adding new URIs referring
to different sets of resources. However, the standard does not
define anything beyond that, yet. Two approaches, currently
investigated to (fully) support malleability with MPI Sessions,
are discussed in Sections IV-A2 and IV-A3.

2) ParaStation MPI: ParaStation MPI [47], [56] is an open
source MPICH [57] derivate and especially designed to sup-
port systems following the Modular Supercomputing Architec-
ture (MSA) [58]. It is a production-level MPI implementation
compatible to MPI-4, including support for MPI Sessions (see
Section IV-A1). It has been extended to support Psets provided
by the runtime environment via the PMIx interface. Furthermore,
MPI extensions have been added to ParaStation MPI as user
interfaces for active malleability. These extensions enable the

1556 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE I
OVERVIEW OF PROGRAMMING MODEL IMPLEMENTATIONS SUPPORTING MALLEABILITY

exploitation of the re-initialization capability of MPI Sessions
for dynamically changing the number of MPI processes. They
are based on the PMIx process group, PMIx spawn, and PMIx
allocation request APIs. Existing MPI Sessions are finalized
and one new MPI Session is initialized to exclude terminated
and include additional processes in the application. The MPI
extensions also provide interfaces to return unused resources
or request additional resources from the resource management
system in an asynchronous way. They have been demonstrated
successfully for active expansions of MPI applications on a
prototype system. In future work, passive malleability can be
supported via the active malleability mechanisms plus relaying
of resource change requests from outside the application via
Psets and/or the MPI extensions.

3) Dynamic Processes With Process Sets (DPP): A recent
approach [24], [59], [60] introduced dynamic MPI Process
interface extensions and an implementation based on Open
MPI [61]. This approach follows the principles further described
in [60] allowing, e.g., adding/removing processes to/from the
application at runtime. The interface abstracts resources as
sets, and resource (re-)assignments as set operations, allowing
the description of the applications’ resource assignments as a
graph. From the application perspective, the interface allows
users to query resource change information, apply set oper-
ations to create new process sets (PSets), where processes
are related to resources, and join with dynamically added
PSets without building or destroying entire MPI Sessions.
This implementation is based on OpenPMIx, including ex-
tensions of it. It will be extended to provide a more flexible
interface for complex application workflows and tighter
integration with global system optimization. The DPP prin-
ciples [60] target to cover all required aspects of dynamic

resources, e.g., 1) a unified interface covering all kinds of
allocation requests, performance hints, and monitoring data, 2)
a change of resources to be application-driven, system-driven or
both, 3) a flexible approach covering all kinds of applications to
avoid an application-specific lock-in, which will be based on 4)
set operations describing the particular change (added, removed,
split, etc.).

4) FlexMPI: FlexMPI [43] provides malleable capabilities to
MPI applications in order to dynamically spawn and shrink the
number of processes in runtime. FlexMPI also includes features
for balancing the application workload (by means of automatic
data redistribution) and monitoring the application performance.
The programming model corresponds to the Single-Program-
Multiple-Data (SPMD). The malleable code section -which usu-
ally corresponds to the iterative part of the code- is delimited by
control points introduced as FlexMPI library calls. In the current
version of FlexMPI runtime the malleable decisions (increasing
or decreasing the application’s number of processes or perform-
ing an automatic load balancing) are provided by an external
controller (for instance, ADMIRE’s Intelligent Controller) that
is responsible for coordinating the decisions based on a holistic
view of the system. Additionally, FlexMPI is integrated with
Slurm in order to dynamically allocate or release certain compute
nodes depending on the malleable actions that are taken. Besides
investigating the use of malleability for improving application
performance, FlexMPI has been also used to explore the use of
malleability for developing application schedulers that permit
application migration, I/O scheduling, and the development of
application performance models.

5) Dynamic Load Balancing Library (DLB) for MPI: DLB
[62], is a dynamic user-transparent library that improves the load
balancing of hybrid applications by managing the number of

TARRAF et al.: MALLEABILITY IN MODERN HPC SYSTEMS: CURRENT EXPERIENCES, CHALLENGES, AND FUTURE OPPORTUNITIES 1557

threads of each MPI process. The library is compatible with MPI,
OpenMP, and OmpSs. Since version 3.0, DLB includes three
independent and complementary modules: LeWI (Lend When
Idle), DROM (Dynamic Resource Ownership Management),
and TALP (Tracking Application Live Performance).

The LeWI module [48] is used in hybrid MPI +
OpenMP/OmpSs applications to dynamically and transparently
change the cores and number of threads assigned to a process.
Once a process reaches a state where its threads are idle, it may
temporarily yield its cores to another process that would benefit
from them. This improves the load distribution by efficiently us-
ing computational resources. LeWI realizes malleability through
programming models (e.g., OpenMP and OmpSs) to dynami-
cally adjust these resources.

DLB relies on the PMPI interface to intercept MPI-blocking
calls. Regarding OpenMP, it uses the public API to change the
number of threads or the OMPT interface based on availability.
These features enable DLB to work transparently with the ap-
plication without requiring code recompilation or modification.
Moreover, a public API is provided that can be used by applica-
tions if the programmer has hints to provide or the application
is DLB-aware.

6) Dynamic Management of Resources Library (DMRlib):
DMRLib [13], which derives itself from the DMR API [49], is
a malleability framework devised to orchestrate job reconfigu-
rations rescaling on-the-fly the number of MPI processes. DM-
Rlib is conceived to facilitate programmability by automating
resource reallocation, process handling, and data redistribution.
DMRlib implements reconfiguration policies to adjust the num-
ber of MPI ranks based on 1) job execution performance metrics
with TALP [44] and 2) global cluster metrics such as resource
availability and pending jobs.

DMRlib comprises a resource management system (RMS)
and an MPI-based parallel distributed runtime. DMRlib pro-
vides the communication layer between them and allows
seamlessly malleable application execution in a cluster work-
load. Slurm, the RMS used, monitors the resource utilization
and job requests. It has been extended to include the capa-
bility of scheduling malleable jobs and managing dynamic
resources.

DMRlib enables malleability in a wide range of applications,
not only the traditional iterative applications like Jacobi, CG, N-
body, and LAMMPS but also producer-consumer bioinformatics
applications [30]. Furthermore, DMRlib is the first malleability
framework to report a malleable GPU-enabled application [11].

7) GASPI and GPI-2: GPI-2 [51] is a scalable and fault-
tolerant open-source implementation of the GASPI [50] stan-
dard specification. It implements a PGAS parallel programming
model and relies on one-sided asynchronous communication
and fine-grained synchronization of accesses to the partitioned
global address space for high scalability and flexibility when
developing parallel applications. GPI-2 provides the capability
to dynamically adjust the number of processes to ensure fault
tolerance [63]. To avoid indefinite blocking, remote operations
can have a timeout value, and an error state vector is accessible
if any issues arise. Through these features, applications can
flexibly adjust to function with the remaining healthy processes.

Moreover, a failed process can be replaced by implementing a
suitable checkpointing scheme [64].

To support the release and request of dynamic resource alloca-
tions, GPI-2 is being extended to implement the PMIx client in-
terface. GPI-2 will support malleable and evolving applications
by implementing new interfaces to request resource changes
at runtime and responding to resource changes initiated by
schedulers and resource managers, respectively. The capabilities
will support adaptation of inter-process communication and
coordination of processes in applications to changed resources.
GASPI will be extended to standardize the implementation of
new interfaces for adaptations to resource changes by appli-
cations initiated by schedulers and resource managers or by
applications themselves.

8) GPI-Space: GPI-Space is a task-based workflow manage-
ment system for parallel applications [53]. It is designed to
automatically coordinate scalable, parallel executions in large,
complex environments, being currently used as a development
and execution platform for various workflow-driven applications
from different domains [65], [66], [67], [68], [69]. GPI-Space al-
lows domain developers to build domain-specific workflows us-
ing their own parallelization patterns, data management policies,
and I/O routines, while relying on the runtime system to address
general aspects related to scheduling, distributed memory man-
agement, task execution and tolerance to failures. Further, it sup-
ports adding or removing workers at runtime without interrupt-
ing the application. The event-driven underlying architecture
of the runtime system allows the coordinating component (the
Agent) to quickly react to events such as worker registrations or
disconnections and take appropriate decisions with respect to the
execution of a workflow (e.g., task assignment, cancellation, and
rescheduling) while ensuring its progress. In the case of worker
registrations, the new workers are immediately scheduled and
served tasks to execute. In case of worker disconnections, all
the tasks previously scheduled to them are rescheduled to the re-
maining workers such that load balance is preserved and fairness
respected. This allows running the GPI-Space applications in a
malleable way and to be tolerant to worker failures. Currently,
the addition or removal of workers can be done interactively
by the user at runtime using RPC commands. This can also be
done automatically by embedding specialized transitions that
invoke specific RPC commands to be executed by the runtime
system. The node removal is also automatically handled by the
runtime system when some nodes become suddenly unavail-
able for various reasons, e.g., hardware failure or allocation
termination.

9) OmpSs-2@Cluster: OmpSs-2 [70] is a task-based pro-
gramming model, similar to OpenMP, which supports task nest-
ing, dependencies among tasks and an advanced dependency
system. OmpSs-2@Cluster [54] is the task offloading exten-
sion of OmpSs-2, which executes tasks across multiple nodes
with distributed memory. OmpSs-2@Cluster can be used either
on its own or in a hybrid configuration in combination with
MPI [71]. Task ordering is inherited from the sequential version
of the code, and there is a common virtual address space across
workers. OmpSs-2@Cluster benefits from core-level malleabil-
ity through integration with the Dynamic Load Balancing (DLB)

1558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

library. OmpSs-2’s malleable thread execution model is used
to transparently load balance MPI+OmpSs-2 programs across
nodes [71].

OmpSs-2@Cluster provides a single API call to dynamically
change the number of nodes [72]. The runtime interacts with
the resource management system to add or remove compute
resources, it automatically redistributes the application’s data
and subsequently schedules tasks across the new number of
nodes. The task-based programming model provides an easy
route for an application to support malleability, since the
application is written in a way that is generally independent
of the underlying compute resources. The current runtime
implementation uses MPI_Comm_spawn, but it will be updated
to use MPI Sessions (see Section IV-A3), which provides greater
flexibility to add and remove resources at arbitrary granularities.
In ongoing work, the malleability support will be extended for
compatibility with hybrid MPI+OmpSs-2@Cluster.

10) PyCOMPSs/COMPSs: PyCOMPSs/COMPSs [55] is a
task-based programming model that tackles large granularity
tasks and aims to be executed in distributed environments. Py-
COMPSs provides a programming model and a runtime system
allowing developers to easily convert a sequential Python script
to parallel workflows for distributed computing environments,
hiding the complexity of the parallelization and of the execution
management. A PyCOMPSs application can be represented as a
Direct-Acyclic-Graph (DAG) that stores information about the
computational load required by the application at any point of
the execution. The runtime has an autoscaling module that is able
to scale up and down the computing resources used by the appli-
cation according to its demands. Combining runtime profiling
information with the task dependency graph, the PyCOMPSs
runtime periodically estimates the remaining parallel workload
and the computing infrastructure capacity. These metrics are use-
ful to determine when to add or remove computing resources. In
previous versions of PyCOMPSs [73], the auto-scaling features
were applied to scale service executions in cloud environments
where the runtime contacts the resource provider API to create
and destroy virtual machines. The auto-scaling feature has been
extended to auto-scale scientific workflows in HPC clusters,
such that the current runtime interacts with Slurm [74].

B. Process Manager / Runtime Environment

The process manager or runtime environment is responsible
for executing applications on the computing resources. It inter-
acts with them (via the programming model agnostic abstraction
layer) to execute malleability operations and with the global
resource management system/scheduler to change the resource
allocation. At this layer, application-level monitoring can be
placed and a local scheduling component can be located to
optimize resource assignments inside and between the managed
applications.

1) ParaStation Management: ParaStation Management [75],
[76], [77] offers a complete open-source process management
system that can be combined with an outer and more generic
resource manager, together with a batch queuing system and
a job scheduler such as Slurm. With ParaStation Management,

processes can be started on remote nodes, communication chan-
nels of remotely started processes can be controlled, and signals
across node boundaries can be managed. The main component
of ParaStation Management is the ParaStation Daemon (psid)
running on each compute node and forming a scalable network
of daemons.

The functionality of the psid can be extended by plugins. The
ParaStation Slurm (psslurm) plugin enables the psid to commu-
nicate with the Slurm scheduler and launcher via Slurm Remote
Procedure Call messages. To support malleability, this plugin
will be extended to enable the coordination of resource allocation
requests between the Slurm scheduler and the node-local process
management system. The ParaStation PMIx (pspmix) plugin
provides a PMIx server in the psid to which the processes of
an application connect as PMIx clients. In the context of mal-
leability, the pspmix plugin will serve as the interface between
the application and the process management. It will provide the
PMIx allocation requests API to clients so that resource changes
can be requested by applications and can be provided to them
as new psets. Any plugin of ParaStation Management can be
interfaced via a hook mechanism in the psid, which enables the
forwarding of a resource allocation request from pspmix via
psslurm to the Slurm scheduler and vice versa for a response of
the scheduler.

2) ADMIRE’s Malleability Workflow: The Intelligent Con-
troller (IC) supports the execution of applications for maximiz-
ing the usage of the computational and I/O resources as well as
the global system performance. To achieve these goals, the IC
provides control mechanisms to coordinate the execution of the
components of the ADMIRE framework. These components are:
the applications, the system and application monitoring tools, the
system job scheduler, the resource manager (e.g., Slurm), and
the I/O subsystem. By coordinating these components, the IC
creates a distributed control infrastructure that provides a single
and global view of the system.

The malleability workflow is described by two communi-
cation channels: 1) the connection between the IC and 2) the
resource manager (Slurm) and the connection between the ap-
plications and the IC. Currently, ADMIRE uses Slurm as a
resource manager. Via the Slurm connector, the IC can send
instructions to Slurm to allocate and deallocate resources for
each application. Using ADMIRE’s communication library, the
applications can exchange information related to malleability
with the IC and execute reconfigurations depending on the
existing policies implemented in the IC.

3) PMIx Reference Runtime Environment: The PMIx Refer-
ence Runtime Environment (PRRTE) [78] is a reference imple-
mentation of a PMIx-enabled runtime environment developed
by the PMIx community. PRRTE provides general process
management and runtime environment services for PMIx-based
HPC jobs and is the native runtime environment of Open MPI.
It could potentially provide common malleability mechanisms
to different programming models, since it is not tailored to a
specific one. PRRTE’s (v3.0.0) malleability support is currently
limited to dynamically spawning new processes on the resources
of the current allocation due to the lack of integration with
system-level resource managers.

TARRAF et al.: MALLEABILITY IN MODERN HPC SYSTEMS: CURRENT EXPERIENCES, CHALLENGES, AND FUTURE OPPORTUNITIES 1559

Recently, a prototype was developed, which extends the
PRRTE, OpenPMIx, and Open MPI implementations to support
a dynamic MPI Sessions interface [24]. These extensions allow
applications to request the addition of processes to and removal
of processes from the application during runtime. Moreover,
applications can query the PRRTE runtime for (potentially
system-driven) addition/removal of processes and indicate the
successful adaption to such changes. So far, this implementation
still relies on the resource allocation initially granted by the
system-level resource manager. To this end, the prototype is
planned to be extended with a PMIx-based interaction between
PRRTE and the system-level resource manager through the
usage of the PMIx_Allocation_request, to dynamically change
the current resource allocation.

C. Malleable Scheduler and Resource Manager

At the node management layer in HPC, malleable job schedul-
ing refers to the process of dynamically allocating or de-
allocating resources during job execution to adapt the resource
usage dynamically, depending on the system conditions and the
application needs. The jobs receive the support to use more or
fewer resources in real-time, scaling up or down their perfor-
mance without the need to terminate and restart. Scheduling
malleable jobs efficiently introduces new challenges that do
not exist in traditional non-malleable platforms. To support dy-
namic job reconfiguration, challenges arise including, e.g., data
redistribution which usually occurs after a malleable operation
(shrink or expansion). Related topics such as the management of
large unstructured data or complex data distributions (e.g., with
data replication in the boundary areas) must be also considered.
Moreover, mechanisms for transferring the application state
to newly created processes while keeping the application in a
consistent state must be defined. Another challenge is the recon-
figuration knowledge required by the scheduler, which needs a
priori information about how the new configuration impacts the
application behavior to determine whether the reconfiguration
is worthy or not. This usually needs a precise estimation of
the application performance using historical data or application
modeling (see Section III-B). This is just the tip of the ice-
berg, as many more challenges exist, including the interaction
between I/O and computational malleability, data dependen-
cies during different phases of the job, and scheduling time
windows.

Scheduling malleable jobs is challenging since it requires
considering (via monitoring) the complete and updated system
and the knowledge about the application scaling performance
(via performance models). Traditional job scheduling systems
(e.g., batch schedulers) are not suitable for malleable jobs. One
suitable approach is to use an intelligent resource manager that
has a holistic vision of the system and the running application
capable of allocating resources dynamically. This allows the
system to allocate the resources for each job in real-time, while
considering the current platform status and the requirements
of both the executing and queued jobs. Here, simulators that
support malleability, such as ElastiSim [79], can facilitate and
expedite the development of novel scheduling policies.

V. MALLEABILITY ON STORAGE RESOURCES

I/O malleability focuses on the dynamism of I/O services and
storage resources. Interestingly, I/O malleability can leverage
the compute nodes from a job allocation directly as storage
resources to increase I/O performance and mitigate negative side
effects on the parallel file system (PFS) due to uncoordinated I/O.
In fact, I/O malleability pursues similar goals as computational
malleability, e.g., improving the job scheduler pipeline, increas-
ing resource usage efficiency, and reducing application runtime.
Hence, applying both methods complementary may lead to
increased benefits. Moreover, they share most of the necessary
architectural components (see Section I), as we discuss in the
following.

A common PFS approach to overcome the performance
penalty of magnetic disks is to introduce a caching layer that
stores frequently accessed data on fast SSD devices. This layer
can be directly implemented inside the file system [80], [81],
[82], be part of an external burst buffer [83], [84], or can
use SSDs inside compute nodes [85], [86], [87]. However, the
degradation in I/O performance caused by cross-application
interference [88], [89], [90], is harder to overcome. Directly
preventing I/O interference from within a malleable scheduler
would require the scheduler to include application I/O patterns
in its decisions and to restrict the number of simultaneously
running I/O-intensive applications. The necessary information
for this is often unavailable, and the resulting logic signifi-
cantly complicates the scheduling and might artificially delay
the execution of applications. Nonetheless, a co-design between
scheduler and applications can shift non-critical I/O phases of an
application (such as check-pointing) in time to avoid potential
simultaneous accesses [91], reducing interference.

Further control of application impact on I/O can be achieved
with QoS extensions for PFSs [92], [93], such as the token bucket
filter in the Lustre file system’s network request scheduler [94].
This can limit the number of data and metadata requests to pre-
vent a single application from saturating the storage. However,
QoS control alone is often not enough to overcome the resulting
interference of access patterns and performance limitations from
the underlying storage systems. Ad-hoc file systems are a recent
storage abstraction [95] that helps reduce I/O interference by
deploying application-specific file systems using the node-local
storage resources assigned to a job. This allows applications to
run effectively isolated from the PFS, which is only accessed to
import input datasets for the application (stage-in) or to export
its results for long-term storage (stage-out). Ad-hoc storage
systems offer a suitable platform to deploy I/O malleability
techniques, which is why we focus on them in the remainder
of this section.

Several components are needed to enable large-scale usage of
ad-hoc storage. Whereas Fig. 1 presented the overall architecture
for a malleable HPC system, Fig. 4 depicts the major five com-
ponents in detail needed to realize this vision: 1) The ad-hoc file
system itself, 2) a data scheduler and management component
controlling the ad-hoc file systems and the data flow between
them and the PFS, 3) a malleability manager determining when
and which malleable aspects of the ad-hoc file system and

1560 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 4. Proposed I/O malleability HPC architecture.

the data transfers are changed, 4) a monitoring and analytics
component keeping track of the system’s resource usage, and 5)
a job scheduler offering an additional interface for optional hints.
Next, we discuss the first three components, as the monitoring
and analytics component was handled in Section III-B, and the
job scheduler was covered in Section IV-C.

A. Ad-Hoc File Systems

Several ad-hoc file system implementations exist, such as
GekkoFS [96], BurstFS [97], Hercules [98], Expand [99],
UnifyFS [100], BeeGFS BeeOND [101], and others [102],
[103], each targeting slightly different use cases. These im-
plementations can be dynamically started and stopped within
a given context (e.g., a compute job) and provision storage
using existing node-local flash-based storage that usually re-
mains unused by applications or even spare memory if avail-
able. Since an ad-hoc file system can form a single names-
pace by combining the devices’ capacity and accumulating
their I/O performance, ad-hoc file systems can scale perfor-
mance almost linearly with the number of nodes used as
servers [95].

Ad-hoc file systems directly support malleability by adapting
to a given use case. Most HPC applications, e.g., do not require
strong consistency semantics and rarely use certain I/O opera-
tions like rename() or readdir() [104], [105]. Ad-hoc file
systems can thus be configured for these applications by relaxing
cache consistency guarantees, increasing the performance of
a file system by simplifying its protocols. Other examples of
settings for I/O malleability are increasing write-back caching
intervals to foster data locality or QoS mechanisms for manag-
ing applications and network interference. More interestingly,
HPC workflows can dynamically tune ad-hoc file systems for
each workflow phase by expanding or reducing the number of
compute nodes used as I/O servers. Note, however, that this
reconfiguration needs potentially large amounts of data to be
redistributed between the new I/O servers. While the scale of this
data will be smaller than the PFS’, the cost of this redistribution
cannot be neglected [106].

Deploying ad-hoc storage systems as fundamental compo-
nents of an I/O-malleable ecosystem requires a management
component and user support: 1) Data staging between different
ad-hoc storage instances needs to be orchestrated to prevent

uncoordinated competition; 2) Each ad-hoc file system needs
to be tuned for its particular use case. The latter typically does
not require special permissions, as most ad-hoc file systems run
in user space, but it does require prior knowledge of an appli-
cation’s I/O behavior, which HPC users typically do not have;
3) Complex applications like Tensorflow [107] or Open-
Foam [108] can exhibit highly complex I/O workflows and
require dynamic reconfiguration of the I/O resources that
requires support from the scheduling environment.

B. Data Scheduler and Management

The input data has to be staged into the ad-hoc file system
before the application can access it, and output data must be
staged out of it before the ad-hoc instance is terminated. The
data scheduler is responsible for interacting with the ad-hoc file
systems to maximize the optimization of the overall system’s
resources. However, the data scheduler cannot work effectively
without user input and, at the very minimum, needs to know
which paths contain an application’s input and where the output
should be placed. The data scheduler transforms the user hints
captured by the job scheduler upon job submission and deploys
ad-hoc file system instances as needed. Once an ad-hoc instance
is deployed, the data scheduler orchestrates data transfers from
the PFS to feed it with data, or to the PFS to transfer data
to persistent long-term storage. These data transfers can also
be malleable, i.e., the number of processes that are involved
and their QoS limitations are dynamic and controlled at run-
time. Since data transfers correspond to actual PFS accesses,
properly orchestrating them is crucial to minimize congestion
and maximize I/O performance. These tasks are not without
challenges because 1) ad-hoc storage space is limited, hence,
any scheduling algorithm controlling the transfers should strive
to keep enough free space in the ad-hoc file system to ensure
applications do not receive an out-of-space error; 2) applications
can make progress as long as they have the data they need, which
means that data should be staged concurrently with application
computations and should ideally be available just before an
application accesses the data of interest; and 3) data that is meant
to be persistent should be staged out to the PFS as soon as it is
no longer needed. Thus, for data staging to happen on time, ap-
plication I/O models need to be investigated that can accurately
predict the frequency and volumes of application I/O phases.
Moreover, for effective data scheduling, these models could be
extrapolated to different node and process configurations. While
several services were proposed to support data staging [109],
[110], [111], [112], to the best of our knowledge, none consider
these issues.

C. Malleability Manager

This component has access to the state of the HPC system’s
resources and makes malleable decisions both targeting ad-hoc
file systems and data transfers. A malleable request is sent
to the data scheduler, executed, or forwarded depending on
whether it targets an ad-hoc file system or a data transfer.
Therefore, such decisions can only be made if the following
information is available: 1) The current load of the PFS, 2) an

TARRAF et al.: MALLEABILITY IN MODERN HPC SYSTEMS: CURRENT EXPERIENCES, CHALLENGES, AND FUTURE OPPORTUNITIES 1561

advanced understanding of an application’s I/O requirements
and phases, and 3) knowledge about the ad-hoc storage sys-
tem’s performance capabilities. Such malleable decisions can
target several parts of an ad-hoc file system, e.g., optimiz-
ing semantic protocols or applying QoS restrictions. For data
transfers, the malleability manager determines when and at
which speed data transfers occur. Finally, the malleability man-
ager takes known application phases into account to minimize
any I/O interference. For example, using the data scheduler,
the staging process can transform random I/O that occurs in
bursts on the ad-hoc file system into sequential I/O on the PFS
that is spread over a longer time frame during a computation
phase.

VI. CURRENT CHALLENGES OF MALLEABILITY

As presented, the support of malleability for traditional HPC
workloads requires adaptations across the entire HPC software
stack. The major challenges that need to be solved are:

1) Resource optimization: Resource management under mal-
leability poses various new challenges requiring the in-
corporation of application- and monitoring-driven data,
allowing decisions to be made within a reasonable time
frame. These decisions can have different targets, e.g.,
improved application throughput, reduced energy con-
sumption, or QoS for I/O. For instance, data redistribu-
tion costs could be reduced by timing these operations
strategically.

2) Monitoring optimization information: Monitoring pro-
vides insight into the application’s performance. The chal-
lenges we see, are the difficulties in processing the vast
amount of monitoring data under the presence of compute
and I/O malleability. This provides the basis for improved
malleable models used in resource optimization.

3) Program optimization information: We see the strong
requirement of application developers to aid resource opti-
mization by providing further information. The challenge
is lowering the programming efforts to extract perfor-
mance information for performance optimizations com-
patible with monitoring information.

4) Malleability for the masses: To be successful, we need
not only a standardized malleable programming model
across the HPC community but also production-ready
implementations and a wide adoption in frameworks for
semi-transparent usage of malleability.

5) HPC hard-/software components: Heterogeneous hard-
/software components already pose challenges to cope
with them. Malleability is even further complicated when
considering, for example, accelerators like GPUs. While
this can, in principle, be handled by malleability ap-
proaches on the host system or process level, it also in-
troduces new challenges and opportunities, e.g., by taking
advantage of active resource partitioning on GPUs [113].

VII. GUIDING THE FUTURE RESEARCH & CONCLUSION

Looking back at the question raised in Section I, the sluggish
progress in making malleability accessible to applications and

systems presents itself as a chicken-and-egg problem. Even if it
was supported on the system side, application developers, espe-
cially those of large and historically grown code bases, would
face substantial practical challenges when trying to introduce
malleability features. Knowing this, system architects do not
see enough incentive to create such support in the first place.
The increasing number of distributed AI training jobs, which
are malleable by design, starts slightly tipping the balance in
favor of malleability – but not yet strongly enough.

Some obstacles application developers need to overcome
stem from data redistribution after shrink or expand requests.
How difficult this is depends on the design pattern applied to
parallelize the program. Task-based programs submit small work
units to a task pool, from which processes or threads can retrieve
them for completion, potentially submitting new tasks while
processing existing ones. As such tasks are usually short-lived
and do not require much communication among themselves,
they form an elastic collection that can be comfortably redis-
tributed whenever nodes are added or removed. While common
on systems with shared memory and supported by standard APIs
such as OpenMP, this pattern is rarely found on large-scale
systems with distributed memory. PyCOMPSs/COMPSs [55]
is an attempt to popularize task-based programming on such
systems.

Yet, not all problems are equally suitable for task-based
programming. Many require geometric domain decomposition,
in which the simulated domain (e.g., the ocean, the atmosphere,
a turbine) is divided into subdomains to be mapped onto pro-
cessing elements. Especially for irregular domains lacking sym-
metry or homogeneity, this division is non-trivial and requires
complex calculations using space-filling curves or sophisticated
tools such as ParMETIS. Dynamic redistribution, whether by
checkpointing, followed by restart in a different configuration –
basically, malleability through the backdoor, for which mold-
ability is sufficient – or by marshaling the data into a new
configuration across the network, always has to solve the same
complex division problem.

An alternative way of looking at this problem, combining
aspects of task-based programming with geometric decompo-
sition, is applying the principle of over-decomposition. Over-
decomposition is ubiquitous in task-based programming but
also beyond. For example, it is one of the cornerstones of
Charm++ [114], a processor-independent programming system
for large-scale HPC. The idea is to divide the problem into
several sub-tasks whose number exceeds the degree of hardware
parallelism by far. An adaptive runtime system then distributes
these sub-tasks across the available parallel hardware, allowing
it to balance the load automatically. This separation of concerns
made Charm++ an early adopter of malleability – as a pretty nat-
ural extension. Although it already enjoys a very large number of
users, it has not yet become mainstream for reasons related to an-
other trade-off. Because most novel HPC programming systems
are created and maintained by researchers, and their funding
suffers from significant volatility, application developers, whose
codes may live on for decades, are highly conservative, trying
to stay on trodden paths and not straying away outside the realm
of established community standards.

1562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

If malleability is to succeed, there is a need for a standardized
interface for dynamic resources. The necessary prerequisites
should, therefore, be fulfilled within the confines of the standard
programming approach, which still is MPI+X. While instru-
ments to shrink and expand MPI communicators are already part
of the standard, data redistribution has always been regarded
as the sole responsibility of the programmer. AMPI [46], an
implementation of MPI based on the Charm++ runtime system,
addresses this problem by representing MPI ranks as lightweight
user-level migratable threads with the option of running multi-
ple of them on a single core. It essentially interprets the idea
of over-decomposition as creating an oversized collection of
ranks, which can then be flexibly mapped on an arbitrary and
potentially changing number of physical cores. While this is
an elegant solution to the problem of making MPI jobs mal-
leable, the virtualization of MPI ranks may suffer from unde-
sired communication and context-switching overhead when the
number of ranks exceeds the number of cores. However, there
might be another way to shift at least a good portion of the
redistribution task to the MPI standard - closer to the original
design philosophy of MPI, combining the notion of virtual
process topologies, expressed as a graph or Cartesian grid, with
the concept of over-decomposition. If there was a controlled
way of splitting arbitrary and (re-)merging adjacent MPI ranks
and their associated data, refining or coarsening neighborhood
relationships of the topology along the way, an MPI job could
be more easily and automatically adapted to changing resource
conditions. Essentially, the redistribution problem would be
reduced to a local operation the user still has to implement
– but without the need for laborious and cumbersome global
repartitioning. Splitting all ranks evenly across the entire job
to occupy twice the number of nodes would even retain load
balance if it had existed before. While this is still a very early
idea that still needs to be proven, we believe its conceptual
simplicity makes it at least worth a try. Moreover, based on our
experience, we saw that individual efforts barely moved things
forward due to the high specialization of what was moved. The
development of a standardized interface covering malleability in
MPI, but also beyond MPI with converged computing is required
for continuous integration and long-term support.

Programmability is the second aspect the success of mal-
leability relies on. Malleability can only be successful if it is
widely adopted by, e.g., applications, frameworks, programming
models, and DSLs. This requires it to be programmable in an
easy way. Here, we envision hiding this complexity in three dif-
ferent ways: 1) Provide malleability support within commonly
used parallel software and parallel libraries, which lowers the
bar for using malleability (see Huber et al. [24], which uses a
dynamic resource extension for p4est) or makes malleability
almost transparent to the application developers using these
updated software packages. 2) We envision a standardized layer
between the application and MPI that provides various func-
tionalities to again lower the bar for utilizing malleability. E.g.,
the DMRLib [13] development already goes in this direction.
3) To still support all other cases and corner cases, direct ac-
cess to the dynamic resource MPI layer is still provided [24],
[59]; however, likely to be more complex to program. We see

programmability as one of the crucial points that is, however,
currently investigated insufficiently.

Finally, while several more points can be added, other im-
portant aspects include developing components that drive the
users towards malleability, which is currently in progress with
changes in, e.g., PMIx, MPI, and schedulers like SLURM, but
more work is required, particularly on the application side and
the scheduler (e.g., FLUX). Moreover, the development of novel
scheduling algorithms co-designed with application and moni-
toring frameworks/libraries could also facilitate the adaption of
malleability.

Summing up, various challenges retain malleability imple-
mentations in HPC. Based on the state-of-the-art, we listed
the main challenges we expect and experienced through recent
efforts in this field across different layers of the software stack.
These challenges are worth facing due to the advantages mal-
leability brings to the HPC systems and users. To facilitate the
process, we listed improvement aspects to guide future research.
We expect malleability to be a key component that will lead to
a new era of supercomputers.

ACKNOWLEDGMENT

The authors gratefully thank Daniel Milroy and Isaías Com-
prés for their help and suggestions for this work.

REFERENCES

[1] S. S. Vadhiyar and J. J. Dongarra, “SRS—A framework for developing
malleable and migratable applications for distributed systems,” Parallel
Process. Lett., vol. 2, pp. 291–312, 2002.

[2] K. El Maghraoui et al., “An architecture for reconfigurable iterative
MPI applications in dynamic environments,” in Proc. Int. Conf. Parallel
Process. Appl. Math., Berlin, Germany, 2006, pp. 258–271.

[3] R. Sudarsan and C. J. Ribbens, “ReSHAPE: A framework for dynamic
resizing and scheduling of homogeneous applications in a parallel envi-
ronment,” in Proc. Int. Conf. Parallel Process., 2007, pp. 44–44.

[4] G. Martín et al., “FLEX-MPI: An MPI extension for supporting dynamic
load balancing on heterogeneous non-dedicated systems,” in Proc. Eur.
Conf. Parallel Process., Berlin, Germany, 2013, pp. 138–149.

[5] F. S. Ribeiro et al., “Autonomic malleability in iterative MPI applica-
tions,” in Proc. Symp. Comput. Architecture High Perform. Comput.,
2013, pp. 192–199.

[6] M. Schreiber et al., “Invasive compute balancing for applications with
shared and hybrid parallelization,” Int. J. Parallel Program., vol. 43, no. 6,
pp. 1004–1027, 2015.

[7] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and L. V.
Kale, “A batch system with efficient adaptive scheduling for malleable
and evolving applications,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2015, pp. 429–438.

[8] I. Comprés et al., “Infrastructure and API extensions for elastic execution
of MPI applications,” in Proc. 23rd Eur. MPI Users’ Group Meeting,
2016, pp. 82–97.

[9] S. Iserte et al., “Efficient scalable computing through flexible applications
and adaptive workloads,” in Proc. 46th Int. Conf. Parallel Process.
Workshops, 2017, pp. 180–189.

[10] P. Sanders and J. Speck, “Energy efficient frequency scaling and schedul-
ing for malleable tasks,” in Proc. Int. Conf. Parallel Process., C. Kakla-
manis et al. Eds. Berlin, Germany: Springer, 2012, pp. 167–178.

[11] S. Iserte and K. Rojek, “A study of the effect of process malleability in the
energy efficiency on GPU-based clusters,” J. Supercomputing, vol. 76,
pp. 255–274, Oct. 2019.

[12] B. Dupont et al., “Energy-aware scheduling of malleable HPC appli-
cations using a particle swarm optimised greedy algorithm,” Sustain.
Comput. Inform. Syst., vol. 28, 2020, Art. no. 100447.

[13] S. Iserte, R. Mayo, E. S. Quintana-Ortí, and A. J. Peña, “DMRlib: Easy-
coding and efficient resource management for job malleability,” IEEE
Trans. Comput., vol. 70, no. 9, pp. 1443–1457, Sep. 2021.

TARRAF et al.: MALLEABILITY IN MODERN HPC SYSTEMS: CURRENT EXPERIENCES, CHALLENGES, AND FUTURE OPPORTUNITIES 1563

[14] J. Carretero et al., “Optimizations to enhance sustainability of MPI
applications,” in Proc. 21st Eur. MPI Users’ Group Meeting, 2014,
pp. 145–150.

[15] M. Rodríguez-Gonzalo et al., “Improving the energy efficiency of MPI
applications by means of malleability,” in Proc. 24th Int. Conf. Parallel
Distrib. Netw. Based Process., 2016, pp. 627–634.

[16] H. Ferreboeuf, “Lean ICT – towards digital sobriety,” The Shift Project,
Mar. 2019. [Online]. Available: https://theshiftproject.org/wp-content/
uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf

[17] D. Bernholdt et al., “A survey of MPI usage in the US exascale computing
project,” Concurrency Computation: Pract. Experience, vol. 32, no. 3,
Sep. 2018, Art. no. e4851.

[18] J. Hungershofer, “On the combined scheduling of malleable and rigid
jobs,” in Proc. 16th Symp. Comput. Architecture High Perform. Comput.,
2004, pp. 206–213.

[19] S. Iserte, “High-throughput computation through efficient resource man-
agement,” PhD dissertation, UJI, Castelló (Spain), Nov. 2018.

[20] M. D’Amico et al., “DROM: Enabling efficient and effortless malleabil-
ity for resource managers,” in Proc. 47th Int. Conf. Parallel Process.
Companion, Eugene OR USA, 2018, pp. 1–10.

[21] R. H. Castain et al., “PMIx: Process management for exascale environ-
ments,” Parallel Comput., vol. 79, pp. 9–29, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819118302424

[22] J. I. Aliaga et al., “A survey on malleability solutions for high-
performance distributed computing,” Appl. Sci., vol. 12, no. 10,
May 2022, Art. no. 5231.

[23] D. G. Feitelson, “Packing schemes for gang scheduling,” in Proc. Work-
shop Job Scheduling Strategies Parallel Process., Berlin, Germany:
Springer, 1996, pp. 89–110.

[24] D. Huber et al., “Towards dynamic resource management with MPI
sessions and PMIx,” in Proc. 29th Eur. MPI Users’ Group Meeting, 2022,
pp. 57–67.

[25] S. Balay et al., “PETSc Web page,” 2022. [Online]. Available: https:
//petsc.org/

[26] J.-L. Lions et al., “Résolution d’EDP par un schéma en temps pararéel,”
Comptes Rendus de l’Académie des Sci. Ser. I Math., vol. 332, no. 7,
pp. 661–668, Apr. 2001.

[27] J. Hungershofer, “On the combined scheduling of malleable and rigid
jobs,” in Proc. 16th Symp. Comput. Architecture High Perform. Comput.,
2004, pp. 206–213.

[28] G. Martín et al., “EpiGraph: A scalable simulation tool for epidemi-
ological studies,” in Proc. Int. Conf. Bioinf. Comput. Biol., 2012,
pp. 529–537.

[29] D. D. Luccio et al., “Coastal marine data crowdsourcing using the internet
of floating things: Improving the results of a water quality model,” IEEE
Access, vol. 8, pp. 101 209–101 223, 2020.

[30] S. Iserte et al., “Dynamic reconfiguration of noniterative scientific appli-
cations,” Int. J. High Perform. Comput. Appl., vol. 33, no. 5, pp. 804–816,
Sep. 2018.

[31] R. Sudarsan et al., “Dynamic resizing of parallel scientific simulations:
A case study using LAMMPS,” in Proc. Int. Conf. Comput. Sci., Berlin,
Germany: Springer, 2009, pp. 175–184.

[32] D. Boehme et al., “Caliper: Performance introspection for HPC software
stacks,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
2016, pp. 550–560.

[33] T. Islam et al., “Exploring the capabilities of the new MPI_T interface,”
in Proc. 21st Eur. MPI Users’ Group Meeting, 2014, pp. 91–96.

[34] A. E. Eichenberger et al., “OMPT: An OpenMP tools application pro-
gramming interface for performance analysis,” in OpenMP in the Era of
Low Power Devices and Accelerators. Berlin, Germany: Springer, 2013,
pp. 171–185.

[35] S. Ramesh et al., “MPI performance engineering with the MPI tool
interface: The integration of MVAPICH and TAU,” in Proc. 24th Eur.
MPI Users’ Group Meeting, 2017, pp. 1–11.

[36] B. Elis et al., “QMPI: A next generation MPI profiling interface for
modern HPC platforms,” in Proc. 26th Eur. MPI Users’ Group Meeting,
2019, Art. no. 4.

[37] DEEP-SEA EuroHPC project, “DEEP-SEA official website,” Apr. 2021.
[Online]. Available: https://www.deep-projects.eu/

[38] REGALE EuroHPC project, “REGALE official website,” Apr. 2021.
[Online]. Available: https://regale-project.eu/

[39] E. Arima et al., “On the convergence of malleability and the HPC power-
stack: Exploiting dynamism in over-provisioned and power-constrained
HPC systems,” in Proc. Int. Workshops High Perform. Comput., 2023,
pp. 206–217.

[40] M. Schulz et al., “On the inevitability of integrated HPC systems and
how they will change HPC system operations,” in Proc. 11th Int. Symp.
Highly Efficient Accel. Reconfigurable Technol., 2021, Art. no. 2.

[41] ADMIRE EuroHPC project, “ADMIRE official website,” Apr. 2021.
[Online]. Available: http://www.admire-eurohpc.eu/

[42] A. Cascajo et al., “LIMITLESS—Light-weight monitoring tool for
large scale systems,” Microprocessors Microsystems, vol. 93, 2022,
Art. no. 104586.

[43] G. Martín et al., “Enhancing the performance of malleable MPI appli-
cations by using performance-aware dynamic reconfiguration,” Parallel
Comput., vol. 46, pp. 60–77, Jul. 2015.

[44] V. Lopez et al., “TALP: A lightweight tool to unveil parallel efficiency
of large-scale executions,” in Proc. Perform. Eng. Modelling Anal. Vis.
Strategy, 2021, pp. 3–10.

[45] P. Lemarinier et al., “Architecting malleable MPI applications for priority-
driven adaptive scheduling,” in Proc. 23rd Eur. MPI Users’ Group
Meeting, 2016, pp. 74–81.

[46] C. Huang et al., “Adaptive MPI,” in Languages and Compilers for
Parallel Computing, L. Rauchwerger, Ed., Berlin, Germany: Springer,
2004, pp. 306–322.

[47] S. M. Pickartz, “Virtualization as an enabler for dynamic resource
allocation in HPC; 1. Auflage,” Dissertation, RWTH Aachen Univ.,
Aachen, Germany, 2019. [Online]. Available: https://publications.rwth-
aachen.de/record/756085

[48] M. Garcia et al., “Hints to improve automatic load balancing with LeWI
for hybrid applications,” J. Parallel Distrib. Comput., vol. 74, no. 9,
pp. 2781–2794, 2014.

[49] S. Iserte et al., “DMR API: Improving cluster productivity by turn-
ing applications into malleable,” Parallel Comput., vol. 78, pp. 54–66,
Oct. 2018.

[50] GASPI-Forum, “GASPI homepage,” Nov. 2022. [Online]. Available:
http://www.gaspi.de/

[51] Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.,
“GPI-2 official website,” Nov. 2022. [Online]. Available: http://www.gpi-
site.com

[52] H. J. Bungartz et al., “Invasive computing in HPC with X10,” in Proc.
3rd ACM SIGPLAN X10 Workshop, 2013, pp. 12–19.

[53] Fraunhofer ITWM, Competence Center High Performance Computing,
“GPI-Space official website,” Sep. 2020. [Online]. Available: https:
//www.gpi-space.de

[54] J. Aguilar Mena et al., “OmpSs-2@Cluster: Distributed memory execu-
tion of nested OpenMP-style tasks,” in Proc. Eur. Conf. Parallel Process.,
Berlin, Germany: Springer, 2022, pp. 319–334.

[55] E. Tejedor et al., “PyCOMPSs: Parallel computational workflows in
Python,” Int. J. High Perform. Comput. Appl., vol. 31, pp. 66–82, 2017.

[56] ParTec AG, “ParaStation MPI,” ParTec AG, 2023. [Online]. Available:
https://github.com/ParaStation/psmpi

[57] W. Gropp, “MPICH2: A new start for MPI implementations,” in
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, D. Kranzlmüller et al. Eds. Berlin, Germany: Springer,
2002.

[58] E. Suarez et al., “White paper: Modular supercomputing architec-
ture: A success story of European R&D,” ETP4HPC, 2022. [On-
line]. Available: https://www.etp4hpc.eu/pujades/files/ETP4HPC_WP_
MSA_20220519.pdf

[59] J. Fecht et al., “An emulation layer for dynamic resources with MPI ses-
sions,” in Proc. Malleability Techn. Appl. High Perform. Comput., Cham:
Springer, 2022, pp. 147–161. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-03856702

[60] D. Huber et al., “Design principles of dynamic resource management
for high-performance parallel programming models,” 2024. [Online].
Available: https://doi.org/10.48550/arXiv.2403.17107

[61] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Recent Advances in Parallel Virtual
Machine and Message Passing Interface, D. Kranzlmüller et al., Eds.
Berlin, Germany: Springer, 2004, pp. 97–104.

[62] M. Garcia-Gasulla et al., “Runtime mechanisms to survive new HPC
architectures: A use case in human respiratory simulations,” Int. J. High
Perform. Comput. Appl., vol. 34, no. 1, pp. 42–56, 2020.

[63] F. Shahzad et al., “Building a fault tolerant application using the GASPI
communication layer,” in Proc. IEEE Int. Conf. Cluster Comput., 2015,
pp. 580–587.

[64] V. Bartsch et al., “GASPI/GPI in-memory checkpointing library,” in Proc.
Int. Conf. Eur. Conf. Parallel Process., F. F. Rivera et al. Eds. Springer,
2017, pp. 497–508.

https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://www.sciencedirect.com/science/article/pii/S0167819118302424
https://petsc.org/
https://petsc.org/
https://www.deep-projects.eu/
https://regale-project.eu/
http://www.admire-eurohpc.eu/
https://publications.rwth-aachen.de/record/756085
https://publications.rwth-aachen.de/record/756085
http://www.gaspi.de/
http://www.gpi-site.com
http://www.gpi-site.com
https://www.gpi-space.de
https://www.gpi-space.de
https://github.com/ParaStation/psmpi
https://www.etp4hpc.eu/pujades/files/ETP4HPC_WP_MSA_20220519.pdf
https://www.etp4hpc.eu/pujades/files/ETP4HPC_WP_MSA_20220519.pdf
https://hal.archives-ouvertes.fr/hal-03856702
https://hal.archives-ouvertes.fr/hal-03856702
https://doi.org/10.48550/arXiv.2403.17107

1564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

[65] D. Grünewald et al., “FRTM—A productive framework for reverse
time migration,” in Proc. EAGE Workshop High Perform. Com-
put. Upstream, Amsterdam, The Netherlands, Sep. 2014, pp. 44–48,
doi: 10.3997/2214-4609.20141914.

[66] D. Merten and F.-J. Pfreundt, “ALOMA, an auto-parallelization tool for
seismic processing,” in Proc. 79th EAGE Conf. Exhib. Workshops, 2017,
pp. 399–403.

[67] J. Böhm et al., “Towards massively parallel computations in algebraic
geometry,” Found. Comput. Math., vol. 21, pp. 1–40, 2020.

[68] N. Weber et al., “Fed-DART and FACT: A solution for federated learning
in a production environment,” 2022, arXiv:2205.11267.

[69] K. Dolag et al., “Visualizing 1011 particles from cosmological simula-
tions,” GCS Inside, vol. 13, no. 2, pp. 29–31, 2015.

[70] Barcelona Supercomputing Center, “OmpSs-2 specification,” Barcelona
Supercomputing Center, 2021. [Online]. Available: https://pm.bsc.es/ftp/
ompss-2/doc/spec/

[71] J. Aguilar Mena et al., “Transparent load balancing of MPI programs
using OmpSs-2@Cluster and DLB,” in Proc. 51st Int. Conf. Parallel
Process., 2022, Art. no. 55.

[72] J. Aguilar Mena, “Methodology for malleable applications on distributed
memory systems,” PhD dissertation, Dept. Comput. Architecture, Uni-
versitat Politècnica de Catalunya, Nov. 2022.

[73] F. Lordan et al., “ServiceSs: An interoperable programming framework
for the Cloud,” J. Grid Comput., vol. 12, no. 1, pp. 67–91, Mar. 2014.
[Online]. Available: https://digital.csic.es/handle/10261/132141

[74] J. Ejarque et al., “The BioExcel methodology for developing dynamic,
scalable, reliable and portable computational biomolecular workflows,”
in Proc. 18th Int. Conf. eScience, 2022, pp. 357–366.

[75] C. Clauss et al., “Dynamic process management with allocation-internal
co-scheduling towards interactive supercomputing,” in Proc. 1st COSH
Workshop Co-Scheduling HPC Appl., Prague, 2016, Art. no. 13.

[76] C. Clauss et al., “Allocation-internal co-scheduling – Interaction and
orchestration of multiple concurrent MPI sessions,” in Co-Scheduling
of HPC Applications, vol. 28. Amsterdam, The Netherlands: IOS Press,
2017, pp. 46–68. [Online]. Available: http://ebooks.iospress.nl/volume/
co-scheduling-of-hpc-applications

[77] ParTec AG, “ParaStation management,” ParTec AG, 2023. [Online].
Available: https://github.com/ParaStation/psmgmt

[78] OpenPMIx Developers, “PMIx reference runtime environment
(PRRTE),” OpenPMIx Developers, 2023. [Online]. Available:
https://github.com/openpmix/prrte

[79] T. Özden et al., “ElastiSim: A batch-system simulator for mal-
leable workloads,” in Proc. 51st Int. Conf. Parallel Process., 2023,
Art. no. 40.

[80] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving unaligned
parallel file access with solid-state drives,” in Proc. 27th IEEE Int. Symp.
Parallel Distrib. Process., 2013, pp. 381–392.

[81] D. Koo et al., “Adaptive hybrid storage systems leveraging SSDs and
HDDs in HPC cloud environments,” Cluster Comput., vol. 20, no. 3,
pp. 2119–2131, 2017.

[82] D. Abramson et al., “A BeeGFS-based caching file system for data-
intensive parallel computing,” in Proc. 6th Asian Conf. Supercomputing
Front., 2020, pp. 3–22.

[83] N. Liu et al., “On the role of burst buffers in leadership-class storage
systems,” in Proc. IEEE 28th Symp. Mass Storage Syst. Technol., 2012,
pp. 1–11.

[84] S. He et al., “S4D-Cache: Smart selective SSD cache for parallel I/O
systems,” in Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst., 2014,
pp. 514–523.

[85] D. Zhao, K. Qiao, and I. Raicu, “HyCache+: Towards scalable high-
performance caching middleware for parallel file systems,” in Proc. 14th
IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2014, pp. 267–276.

[86] G. Congiu, S. Narasimhamurthy, T. Süß, and A. Brinkmann, “Improving
collective I/O performance using non-volatile memory devices,” in Proc.
IEEE Int. Conf. Cluster Comput., 2016, pp. 120–129.

[87] Y. Qian et al., “LPCC: Hierarchical persistent client caching for lustre,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2019,
Art. no. 88.

[88] J. F. Lofstead et al., “Managing variability in the IO performance of
petascale storage systems,” in Proc. Conf. High Perform. Comput. Netw.
Storage Anal., 2010, pp. 1–12.

[89] B. Xie et al., “Characterizing output bottlenecks in a supercomputer,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2012,
pp. 1–11.

[90] C. Kuo, A. Shah, A. Nomura, S. Matsuoka, and F. Wolf, “How file access
patterns influence interference among cluster applications,” in Proc. IEEE
Int. Conf. Cluster Comput., Madrid, Spain, 2014, pp. 185–193.

[91] D. E. Singh and J. Carretero, “Combining malleability and I/O control
mechanisms to enhance the execution of multiple applications,” J. Syst.
Softw., vol. 148, pp. 21–36, 2019.

[92] A. Gulati et al., “pClock: An arrival curve based approach for QoS
guarantees in shared storage systems,” in Proc. ACM SIGMETRICS Int.
Conf. Meas. Model. Comput. Syst., 2007, pp. 13–24.

[93] X. Zhang et al., “QoS support for end users of I/O-intensive applications
using shared storage systems,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2011, pp. 18:1–18:12.

[94] Y. Qian et al., “A configurable rule based classful token bucket filter
network request scheduler for the lustre file system,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2017, Art. no. 6.

[95] A. Brinkmann et al., “Ad hoc file systems for high-performance comput-
ing,” J. Comput. Sci. Technol., vol. 35, no. 1, pp. 4–26, 2020.

[96] M. Vef et al., “GekkoFS—A temporary distributed file system for
HPC applications,” in Proc. IEEE Int. Conf. Cluster Comput., 2018,
pp. 319–324.

[97] T. Wang et al., “An ephemeral burst-buffer file system for scientific
applications,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2016, pp. 807–818.

[98] F. J. Rodrigo Duro et al., “Evaluating data caching techniques in DMCF
workflows using hercules,” in Proc. 2nd Int. Workshop Sustain. Ultra-
scale Comput. Syst., Spain, 2015, pp. 95–106.

[99] F. Garcia-Carballeira et al., “The design of the expand parallel file
system,” Int. J. High Perform. Comput. Appl., vol. 17, no. 1, pp. 21–37,
2003.

[100] Lawrence Livermore National Laboratory, “UnifyFS,” Lawrence Liver-
more National Laboratory, 2019. [Online]. Available: https://github.com/
LLNL/UnifyFS

[101] BeeGFS, “BeeOND: BeeGFS on demand,” BeeGFS Wiki, 2018. [On-
line]. Available: https://www.beegfs.io/wiki/BeeOND

[102] O. Tatebe et al., “CHFS: Parallel consistent hashing file system for node-
local persistent memory,” in Proc. Int. Conf. High Perform. Comput.
Asia-Pacific Region, 2022, pp. 115–124.

[103] J. Garcia-Blas et al., “IMSS: In-memory storage system for data intensive
applications,” in Proc. Int. Conf. High Perform. Comput., Cham, 2022,
pp. 190–205.

[104] P. H. Lensing et al., “Direct lookup and hash-based metadata placement
for local file systems,” in Proc. 6th Annu. Int. Syst. Storage Conf., 2013,
pp. 5:1–5:11.

[105] C. Wang et al., “File system semantics requirements of HPC applica-
tions,” in Proc. 30th Int. Symp. High Perform. Parallel Distrib. Comput.,
E. Laure et al. Eds. 2021, pp. 19–30.

[106] A. Miranda et al., “Reliable and randomized data distribution strategies
for large scale storage systems,” in Proc. 18th Int. Conf. High Perform.
Comput., 2011, pp. 1–10.

[107] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. 12th USENIX Symp. Operating Syst. Des. Implementation, K.
Keeton and T. Roscoe, Eds. Savannah, GA, USA, 2016, pp. 265–283.

[108] H. Jasak et al., “OpenFOAM: A C++ library for complex physics simula-
tions,” in Proc. Int. Workshop Coupled Methods Numer. Dyn., Dubrovnik,
Croatia, 2007, pp. 1–20.

[109] H. Abbasi et al., “DataStager: Scalable data staging services for petascale
applications,” in Proc. 18th ACM Int. Symp. High Perform. Distrib.
Comput., 2009, pp. 39–48.

[110] B. Dong et al., “Data elevator: Low-contention data movement in hier-
archical storage system,” in Proc. IEEE 23rd Int. Conf. High Perform.
Comput., 2016, pp. 152–161.

[111] P. Subedi et al., “Stacker: An autonomic data movement engine for
extreme-scale data staging-based in-situ workflows,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2018, pp. 73:1–73:11.

[112] A. Miranda, A. Jackson, T. Tocci, I. Panourgias, and R. Nou, “NORNS:
Extending Slurm to support data-driven workflows through asyn-
chronous data staging,” in Proc. IEEE Int. Conf. Cluster Comput., 2019,
pp. 1–12.

[113] U. Saroliya, E. Arima, D. Liu, and M. Schulz, “Hierarchical resource
partitioning on modern GPUs: A reinforcement learning approach,” in
Proc. IEEE Int. Conf. Cluster Comput., Santa Fe, NM, USA, 2023,
pp. 185–196.

[114] Charm++ Developers, “Charm++ documentation,” 2023. [Online]. Avail-
able: https://charm.readthedocs.io/en/latest/charm++/manual.html

https://dx.doi.org/10.3997/2214-4609.20141914
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://digital.csic.es/handle/10261/132141
http://ebooks.iospress.nl/volume/co-scheduling-of-hpc-applications
http://ebooks.iospress.nl/volume/co-scheduling-of-hpc-applications
https://github.com/ParaStation/psmgmt
https://github.com/openpmix/prrte
https://github.com/LLNL/UnifyFS
https://github.com/LLNL/UnifyFS
https://www.beegfs.io/wiki/BeeOND
https://charm.readthedocs.io/en/latest/charmprotect $
elax +$protect $
elax +$/manual.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

