
I/O Behind the Scenes: Bandwidth Requirements of
HPC Applications With Asynchronous I/O

Ahmad Tarraf
Department of Computer Science
Technical University of Darmstadt

Darmstadt, Germany
ahmad.tarraf@tu-darmstadt.de

Javier Fernandez Muñoz
Department of Computer Science
University Carlos III of Madrid

Leganés, Spain
jfmunoz@inf.uc3m.es

David E. Singh
Department of Computer Science
University Carlos III of Madrid

Leganés, Spain
dexposit@inf.uc3m.es

Taylan Özden
Department of Computer Science
Technical University of Darmstadt

Darmstadt, Germany
taylan.oezden@tu-darmstadt.de

Jesus Carretero
Department of Computer Science
University Carlos III of Madrid

Leganés, Spain
jcarrete@inf.uc3m.es

Felix Wolf
Department of Computer Science
Technical University of Darmstadt

Darmstadt, Germany
felix.wolf@tu-darmstadt.de

Abstract—I/O bandwidth is a critical resource in an HPC
cluster. As with all shared resources, its availability is impacted
significantly by the users and the applications they execute.
Without proper restrictions, jobs consuming more prominent
portions of the I/O bandwidth can severely affect other jobs by
notably prolonging their runtime. In such a context, applications
that perform asynchronous I/O bring unique properties that
allow for the reduction of such effects. That is, by limiting
the bandwidth to the required one to perform the I/O in the
background of the compute phases, I/O bursts can be flattened
without significantly prolonging the application time, if at all.
Hence, the bandwidth consumption of such applications is limited
to what they need, sparing much of the system bandwidth to other
applications. At the same time, these applications achieve higher
parallel efficiency due to the overlapping of different resources
(e.g., compute and I/O). This paper shows these aspects and
demonstrates our approach to finding the required bandwidth
for applications that use asynchronous I/O. Moreover, we apply
it automatically using an MPI implementation of a bandwidth
limitation approach at the application level. We validate our
approach with several experiments on a large production cluster
and show the impact of our approach on the application behavior
and its importance for the system throughput.

Index Terms—Bandwidth limitation, asynchronous I/O, I/O
requirements, MPI-IO, requirement engineering

This work was funded by the European Commission and the German
Federal Ministry of Education and Research (BMBF) under the EuroHPC
programmes DEEP-SEA (GA no. 955606, BMBF funding no. 16HPC015) and
ADMIRE (GA no. 956748, BMBF funding no. 16HPC006K), which receive
support from the European Union’s Horizon 2020 programme and DE, FR, ES,
GR, BE, SE, GB, CH (DEEP-SEA) or DE, FR, ES, IT, PL, SE (ADMIRE).
Moreover, this work was also funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project No. 449683531 (ExtraNoise).
Additionally, this work received further funding from BMBF and the Hessian
Ministry of Science and Research, Art and Culture (HMWK) for supporting
this work as part of the NHR funding. Furthermore, this work also received
funding from the Spanish Research Agency with project reference PCI2021-
121966. Finally, the authors gratefully acknowledge the computing time
provided to them on the high-performance computer Lichtenberg II. This is
funded by BMBF and the State of Hesse.

I. INTRODUCTION

Typical high-performance computing (HPC) applications
represent simulations of large scientific problems executed
on massive clusters with vast resources. Since 1993, the
TOP500 list [1] ranks the top clusters twice yearly according
to the resources. As HPC applications usually run on several
nodes, the message passing interface (MPI) has been widely
adopted in the parallel programming domain. While more
computing resources (typically user-exclusive) are great for
boosting computational performance, other shared resources,
like Input/Output (I/O) performance, are often overlooked.
Recent terms, such as the storage wall [2], try to quantify the
I/O performance bottleneck from the application scalability
perspective. Even though recent studies have shown exascale
systems will provide a far greater increase in computational
speed than I/O bandwidth [3], the distribution of the latter
resource often remains at the mercy of the users.

In this context, performance degradation and I/O contention
are often encountered as different jobs compete for shared
resources as I/O [4], [5]. Several studies have been conducted
to understand and characterize the I/O behavior of HPC
applications [6]–[8]. Typical HPC applications are composed
of alternating I/O and computational phases. The I/O phases
tend to be periodic, with dominating write I/O operations
(e.g., checkpointing) occurring in bursts synchronously across
several processes [2]. Due to this behavior, I/O bursts are
quite common in HPC [9]–[11]. In particular, I/O bursts refer
to the phenomena when an enormous amount of I/O traffic
is transferred in a short period of time [12]. Recent studies
also discovered spatial I/O burst, which can occur due to
unequal distribution of I/O workload across the compute nodes
or the adjacent mapping of jobs with high I/O bursts [12].
Moreover, besides its burstiness and periodicity, dominant I/O
behavior tends to be repetitive as applications are executed
several times on HPC clusters [13]. Since resources like I/O

426

2024 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/24/$31.00 ©2024 IEEE
DOI 10.1109/CLUSTER59578.2024.00044

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

lu
st

er
 C

om
pu

tin
g 

(C
LU

ST
ER

) |
 9

79
-8

-3
50

3-
58

71
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CL
U

ST
ER

59
57

8.
20

24
.0

00
44

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



are shared between users, a single simulation that extensively
consumes I/O bandwidth can severely impact the runtime of
other applications that are trying to access the shared parallel
file system (PFS) [14]. This cross-application interference can
impact I/O performance significantly, leading, for example, to
a more than 200 times difference between identical workloads
depending on the time when they were executed [15], [16]. For
performance-degraded applications, this leads to prolonged
execution times due to the lack of fairness. To control shared
resource distribution among users, quality of service (QoS)
is needed, which has a long research history [5], [17]–[22].
While approaches like external token-bucket mechanisms for
bandwidth I/O control [21] or token bucket filter implemented
in the Lustre file system’s network request scheduler [22]
can prevent a single application from consuming the entire
I/O bandwidth, there are missed optimizations potentials,
especially for applications that use asynchronous I/O.

Asynchronous I/O in HPC holds huge potential for im-
proved parallel efficiency by utilizing different components
of the system at the same time. Still, systematic studies of the
benefits and limitations of asynchronous I/O for applications
are missing [23]. In contrast to synchronous I/O, asynchronous
I/O can hide partially, if not completely, the I/O phases behind
the computational or communications phases. Thus, different
application phases can overlap by utilizing different system
components (e.g., storage devices and CPUs), achieving higher
throughput and decreasing the time the application spends on
I/O solely.

In this paper, we exploit applications that use asynchronous
MPI-IO to (1) spare the I/O bandwidth of the system as much
as possible while (2) increasing the parallel efficiency of these
kinds of applications (i.e., utilizing different system compo-
nents simultaneously). To realize this, our approach combines
two aspects that are often handled separately. The first part
of our approach examines the asynchronous I/O behavior of
an application to determine the bandwidth required to execute
these I/O operations in the background of the compute phases.
The second part of our approach limits the application’s
bandwidth to the found value through an extended MPICH
version. This way, applications with asynchronous MPI-IO
only use as much bandwidth as needed to execute the I/O
operation unnoticed, ideally with unchanged runtimes, while
sparing the shared I/O bandwidth of the system for other
applications (e.g., synchronous I/O applications), which have
less flexibility regarding their I/O consumption. Thus, this
paper contributes by:

• Presenting an approach that finds for an application
with asynchronous MPI-IO the bandwidth requirements
through the open-source library TMIO1 (Tracing MPI-
IO) with a very low overhead. Furthermore, the library
provides insight into the asynchronous I/O performance
(i.e., hidden and visible I/O).

• Extending the MPICH MPI implementation2 with the

1https://github.com/tuda-parallel/TMIO/
2https://github.com/jfmunoz00/MPICH-IOBandwidth-Limitation

ability to limit the bandwidth of asynchronous MPI-IO
operations. We provide means to control the consumed
bandwidth at the user-level.

• Combining the previous points to execute I/O behind
the scenes seamlessly. Both approaches are stand-alone
open-source tools that are publicly available. No code
modifications are required; the library is preloaded, while
the other is just a modified MPI version.

• Demonstrating the applicability of our approach based on
examples executed on an HPC cluster in production.

This paper is structured as follows: We provide a moti-
vation for our work in Sec. II followed by an overview of
asynchronous MPI-IO in Sec. III. While Sec. IV shows how to
find the required bandwidth of an application, Sec. V describes
the extensions to MPICH and how we limit the bandwidth at
the user level. We provide the experimental results in Sec. VI.
Finally, after looking into the state-of-the-art in Sec. VII, we
provide our future work and the conclusion in Sec. VIII.

II. MOTIVATION

To improve the user experience for interactive data ex-
ploration, the consistency of I/O performance is essential to
avoid over-stressing the storage system and unexpected job
termination [24]. Many applications spend 15-40% of their
execution time performing I/O, with a good probability that
this value even further increases in the future [5], [25]–[28].
Considering this fact, and that numerous applications have
bursty I/O behaviour [9]–[11], [28], I/O contention and perfor-
mance degradation [29], [30] as well as mechanism to avoid
them [4], [5], [17], [25] popular research topics. While several
sophisticated QoS approaches [5], [17]–[22], for example from
the application side [31] or using burst buffers [32] try to solve
these problems, they often miss the optimization potentials a
specific kind of I/O offers, namely asynchronous I/O. When
an application uses synchronous I/O, the I/O requests are done
after or before the computational phases. The time needed to
perform the I/O request will directly contribute to the total
application time. Thus, the higher the I/O bandwidth, the
faster the application will be executed, justifying the need for
the highest possible bandwidth. In contrast, an asynchronous
application overlaps I/O with computational phases. Ideally,
the I/O bandwidth required has a maximum limit equivalent
to the computational time. This allows applications that use
asynchronous I/O to flatten the I/O burst to some degree, up
to the required bandwidth, without affecting their runtime sig-
nificantly, if at all. Furthermore, as I/O threads can compete for
resources with the compute threads [33], prioritizing compute
threads can yield performance gains for asynchronous I/O as
we demonstrate later. These two aspects are often overlooked
in HPC, as the system is usually not concerned with the type
(async/sync) of I/O but instead tries to respond as fast as
possible to the stream of I/O requests. On the other hand,
application developers that utilize asynchronous I/O in their
code often assume that the overlap with the computational
phases will be good enough, regardless of the configuration.

427

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Closer to the original idea of performing asynchronous I/O
in the background of the other phases, and without wasting
computational resources on waiting or checking request com-
pletion and I/O bandwidth on too fast executions, we propose a
solution that does not need any code modifications. Our library
automatically limits the bandwidth consumption of applica-
tions that use asynchronous I/O to what is needed, flattening
the I/O burst and sparing the bandwidth for other applications
whose runtime directly depends on this resource. This way, the
asynchronous I/O of these applications is performed behind the
scenes with a lower impact on the shared resource and ideally
without prolonging their execution times.

Our approach does not seek to compete with QoS ap-
proaches. Generally, QoS cannot be perfectly achieved from
an application-centric view. On the contrary, bandwidth lim-
itation from such a perspective can slow down the cluster’s
performance since contention is more likely to happen as
the affected application performs I/O for a longer duration.
A global view is required to utilize the system’s bandwidth
completely optimally. Yet, there might be cases where limiting
the bandwidth of applications with asynchronous I/O only
during contention can increase the system’s performance. An
example of this is shown in Figure 1, which has been simulated
using ElastiSim [34]. Aligning with most settings of the
Lichtenberg cluster (i.e., 500 nodes, 96 cores per node, and a
PFS speed of 120 GB/s), we executed eight jobs mimicking
HACC-IO (explained later in Sec. VI-B) with different node
configurations (16, 32, or 96 nodes). Only job 4 performs asyn-
chronous I/O, while the others execute their I/O synchronously.
The top part of Figure 2 shows the bandwidth distribution for
unrestricted access (i.e., fair bandwidth distribution according
to the number of nodes). In contrast, the bottom part shows
the case where the bandwidth of job 4 is limited according to
our methodology during contention only. As Figures 1 and 2
show, almost all jobs profited from the spared bandwidth.

This paper aims to provide an approach that identifies

Fig. 1. Example showing that limiting the bandwidth of an application with
asynchronous I/O allows other applications to utilize the spared bandwidth.
The top part shows the runtime of the jobs in case there are no restrictions
(fair bandwidth distribution according to the number of nodes). In contrast,
the lower part shows the results in case job 4, the only job with asynchronous
I/O, is slowed down to, at most, the required bandwidth during contention.
Note that due to contention, the runtime of this job slightly increases.

Fig. 2. Bandwidth distribution for the two cases shown in Figure 1.

the application’s required bandwidth and demonstrates how
it can be limited. We provide a user-level approach for
broader support. This metric can be considered by the I/O
scheduler to dynamically schedule I/O accesses to reduce the
contention. As the example in Figure 1 showed, other decision
mechanisms like a job scheduler could also profit from our
approach. This allows such mechanisms to exploit the benefits
that asynchronous I/O offers to the application and the system.

III. ASYNCHRONOUS MPI-IO

Asynchronous I/O is gaining significant importance as it
can hide some or all of the costs associated with I/O by
overlapping communication and computation operations with
I/O operations [35]. Several ways exist to realize asynchronous
I/O (see Sec. VII). In this paper, we focus on the MPI imple-
mentation. While a single synchronous I/O call will not return
until the I/O operation is complete (e.g., MPI File write),
an asynchronous I/O call (e.g., MPI File iwrite) initiates an
I/O operation but does not wait for it to complete. The MPI
standard demands matching pairs for non-blocking opera-
tions. That is, a separate request complete call (MPI Wait,
MPI Test, or any of their variants) is needed to complete
the I/O request [36, Ch. 14.2]. Ideally, the asynchronous
I/O operation would be executed in the background of the
compute phase unnoticed. Thus, to utilize the full potential of
asynchronous I/O, an asynchronous I/O operation should finish
before it reaches the request-complete call, avoiding wasting
resources on waiting for the I/O operation to finish. Asyn-
chronous I/O happens entirely in the background, overlapping
the computational phase if this is achieved. If the I/O operation
takes longer, the advantage of asynchronous I/O is somehow
diminished. This is where our developed methodology aims
to contribute by providing a metric called required bandwidth
(B), which quantifies the I/O requirements of the application to
avoid the second —undesired— scenario. On the other hand,
the metric that quantifies the real I/O behavior (i.e., bytes
transferred per second) is referred to as throughput (T ). Both
will be explained in detail in Sec. IV-A.

428

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



According to the MPI standard [36, Ch. 14.6], for asyn-
chronous data operations, access can occur between the call
to the asynchronous data access routine and the return from
the corresponding request complete routine. To gain more
control of the asynchronous I/O, we implemented our runtime
in a modified MPICH version that spawns a thread for I/O.
This was necessary for our bandwidth-limiting approach, as
explained later in Sec. V. Moreover, it brings the advantage
of computing the throughput for asynchronous I/O operations
more accurately. The thread can easily find this value by
monitoring the transferred bytes and the elapsed time of
the I/O operation. This removes the need for less accurate
methods, like frequent calls to MPI Test, though it can still
be used if needed. Thus, for this paper, the throughput results
are obtained based on the data and timing of the I/O thread.

IV. ASYNCHRONOUS I/O REQUIREMENTS

I/O bandwidth is one of the most valuable resources in
HPC systems. Traditionally, approaches focus on the I/O
behavior of an application, like throughput change over time.
In what follows, we tackle the problem differently: We assess
the bandwidth requirements of HPC applications employing
asynchronous MPI-IO.

A. I/O requirements at the rank level

As mentioned in Sec. III, we examine two aspects of
asynchronous I/O: (1) the I/O requirements associated with
the required bandwidth and (2) the real I/O behavior quantified
by the throughput. For asynchronous I/O, we define the I/O
requirement as the bandwidth required such that the applica-
tion finishes an asynchronous I/O operation before reaching
the matching blocking operation (e.g., MPI Wait). This is
illustrated in Figure 3. After the first computational phase
(phase 0), an MPI Wait operation is called (which returns
immediately), followed by an asynchronous I/O operation,
namely MPI File iwrite. An I/O thread is spawned that carries
out the asynchronous I/O operation in the background of the
next computational phase (phase 1). Assuming that the I/O
operation is immediately executed once submitted (which is
the case for our implementation), the time consumed to finish
the I/O operation of phase 0 is ∆t′0,0. However, ideally the
I/O operation finishes at least at the end of the second com-
putational phase, i.e., before the matching MPI Wait function,
such that no time is wasted waiting for the I/O operation to
finish. For that, the required (or available) time window to
finish the I/O operation is ∆t0,0. ∆t0,0 can be captured by
intercepting the asynchronous I/O operation (MPI File iwrite)

Fig. 3. Rank 0 performing asynchronous I/O during the computational phases.

and the corresponding blocking one (MPI Wait). As for each
rank i ∈ [0, n), the number of transferred bytes bi,j is captured
beside the required I/O time window ∆ti,j , the required
bandwidth Bi,j for phase j ∈ [0,m) is simply:

Bi,j =
bi,j
∆ti,j

, (1)

such that ∆ti,j = tei,j− tsi,j with tei,j and tsi,j indicating the
required end and start time of the asynchronous I/O operations,
respectively. Thus, Bi,j represent the bandwidth required by
rank i during the jth I/O phase (i.e., (j + 1)th computational
phase), such that the asynchronous I/O operation is performed
completely in the background. If several requests are submitted
in the same phase, for each request, the bandwidth is calculated
similarly to Eq. (1). To obtain the rank-level metric Bi,j again,
either the sum or the average of the individual bandwidths can
be computed. For this paper, we sum the bandwidths of the
individual requests, as this results in higher values for Bi,j .

Similarly to Bi,j from Eq. (1), by dividing bi,j by the actual
time window ∆t′i,j of the I/O operation, the throughput Ti,j

of rank i for phase j is obtained:

Ti,j =
bi,j
∆t′i,j

(2)

With our modified MPICH version, we accurately determine
∆t′i,j . Note that, as standard MPI implementations are re-
stricted to the MPI level and are unconcerned with how
asynchronous I/O is realized, the exact value of ∆t′i,j is hard
to find and depends on the number of tests (e.g., MPI Test)
performed during the computational phase j + 1. Moreover,
while the required I/O time windows ∆ti,j stay nearly constant
(in accordance with the compute phase), the actual I/O time
windows ∆t′i,j can vary significantly as shown in Figure 3, due
to several reasons (e.g., network congestion, slow I/O, and I/O
congestion). Hence, Ti,j is strongly affected by I/O variability.
On the contrary, Bi,j is tightly coupled to the duration of the
compute phase, which can also be subjected to variations.

For the case a rank submits multiple requests during a
phase, the I/O phase of the throughput Ti,j starts once the
first request is pushed into a throughput monitoring queue
and ends once the last request is completed and the queue
becomes empty. For the required bandwidth Bi,j , while the
start time (i.e., tsi,j) is the same (once the first request is
pushed into a bandwidth monitoring queue), the I/O phase
ends (i.e., tei,j) once the first request in the queue reaches the
matching wait operation. While TMIO provides options to set
tei,j after the last request in the queue reaches the matching
wait operation, we opted for the previous case, as it results in
higher bandwidth requirements.

B. Bandwidth limitation using I/O requirements

With the required bandwidth for each rank at hand, the
throughput of each rank can be limited according to Bi,j .
This can be realized through different methods, for example,
aggregating Bi,j over all involved ranks and calculating an
application-level metric. We developed our methodology by

429

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



limiting the I/O throughput Ti,j of each rank separately to the
corresponding required bandwidth Bi,j from the last phase.
To be more precise, after finding Bi,j , the throughput Ti,j+1

of the next phase (i.e., j + 1) is limited to this value. Note
that we still refer to our approach as bandwidth limitation as
it is widely known in the literature, though the throughput is
actually limited by the values of the bandwidth.

Since Bi,j is calculated from a previous phase and used
to limit the next one, several limitations can occur. The most
obvious is when the computing phase during the phase j + 1
differs from the one during the jth phase. By limiting the
throughput to a too-low value, the I/O of the rank could
force the application to wait until it completes. Looking at
this aspect from the opposite direction, a too-high limit could
result in no benefits, as the I/O operation can be too slow.
However, the latter brings no disadvantages compared to a
standard run, while the first could prolong the application’s
runtime. Hence, a methodology is needed to decide the value
for limiting the throughput of the next phase based on what has
been calculated so far. For that, we developed three strategies:

1) The direct strategy assigns the goal of the next phase
to the obtained value from the last phase (i.e., Bi,j)
multiplied by a tolerance factor (tol).

2) The up-only strategy only assigns increasing values of
Bi,j ∗ tol as the limit for the next phase.

3) The adaptive strategy takes Bi,j and the difference
between Bi,j and Bi,j−1 multiplied by tolerance values
as the limit for the next phase. Inspired by control theory,
this strategy mimics a PI controller for a softer transition.

Depending on tol, the direct strategy can be very restrictive,
resulting in waiting phases. In contrast, while the up-only
strategy yields less restrictive limits, it decreases the chance
of spending time in waiting phases but often results in less
exploitation of the compute phases by asynchronous I/O.
Thus, the first strategy is the aggressive one with the highest
exploitation chances, while the latter is the safer one. The
third strategy lies between the previous two and is more
balanced. As Bi,j is computed at the MPI level, several
aspects, like threads competing for resources [33], are ignored.
The tolerance value tries to compensate for these aspects.

C. Application level I/O requirements

Our approach works on a per-rank basis. After an MPI Wait
or any of its derivatives is reached, each MPI rank sets the limit
according to the used strategy. However, it’s more convenient
to show the results at the application level for visualization.
Furthermore, providing an application-level metric can be eas-
ily interpreted by existing I/O scheduling and QoS approaches,
as mentioned in Sec. II. Hence, in this section, we derive an
application-level metric from the calculated rank-level metrics.
Since a typical HPC application is executed with n MPI ranks,
the required bandwidths Bi,j of each rank i ∈ [0, n) during
the phases j ∈ [0,m) are collected. We compute the required
bandwidth Br of the overlapping I/O phases in the r ∈ [0, p)
regions to summarize the individually collected data at a higher
level of abstraction. That is, the regions include segments at

the application-level in which the I/O phases of the different
ranks overlap, and Br is the sum of the required bandwidths
Bi,j inside the region across the ranks. Consequently, the
maximum of Br represents the minimal required bandwidth
at the application level such that during the entire execution
of the job, no time is spent waiting for a matching blocking
operation (e.g., MPI Wait) to finish.

To find the r ∈ [0, p) regions in which the I/O phases
overlap across the ranks, the start tsi,j and the end tei,j time
of the collected bandwidths Bi,j are examined. We sort these
time values and detect the start time (tsr) of each region from
these sorted values. That is, by iterating over the sorted values,
whenever a start time tsi,j or end time tei,j is encountered, a
new region is detected, tsr is assigned, and the bandwidth Bi,j

is added to or subtracted from the current sum to find Br. This
implies that only the start time of the regions tsr is needed,
as the end time of the regions is implicit (i.e., just before the
next region starts or all data was handled). Consequently:

Br = {
∑

i∈[0,n)
j∈[0,m)

Bi,j | tsr ∈ [tsi,j , tei,j)}
(3)

This calculation is done offline in the plotting script (for
this paper) or optionally online if the appropriate flags are
provided to TMIO. The example in Figure 4 demonstrates
this approach. Three ranks performed asynchronous I/O and
their required bandwidths B0,0, B1,0, and B2,0 were captured.
In this example, all required bandwidths belong to the same
phase 0. However, this is not always the case unless collective
operations are used. Five regions were identified as shown by
the circled number at the top of Figure 4. The points in the
lower part of the figure indicate the time (x-axis) when Br

was calculated and the value (y-axis) it attained. Once Br is
found, the value is held until the next region starts. As all data
has been processed at te1,0, no further region is added.

For simplicity, we refer to Br as B in what follows.
The application level T is similarly calculated from Ti,j .
As the limiting strategies scale the values of each Bi,j , we
calculate BL in the same way as B, however, with these
scaled values. Hence, BL is the limit applied at the application

Fig. 4. Finding Br in the r ∈ [0, 5) regions. The top part of the figure shows
the required bandwidths of the first three ranks versus time, while the lower
part shows how Br is calculated.

430

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



level (depending on the strategy and tolerance), while B is the
lowest limit needed. To sum up, the symbols stand for:

• B: Short for Br, which is the required bandwidth of the
overlapping I/O phases from different ranks in the r ∈
[0, p) regions (see Figure 4).

• BL: The bandwidth limit at the application level. While
its calculation is similar to Br, it uses scaled values for
each Bi,j , depending on the strategy and tolerance used.

• Bi,j : The required bandwidths of each rank i ∈ [0, n)
during the phase j ∈ [0,m) (see Eq. (1)).

The application and rank level throughputs T and Ti,j are
defined similarly to B and Bi,j by replacing the term re-
quired bandwidth with throughput, respectively. Note that the
application-level metrics B, BL, and T are calculated for
illustration purposes, as the limit is applied on the rank level.

D. Overhead of the tracing library

The tracing library TMIO has three roles: (1) trace the
throughput Ti,j and bandwidth Bi,j , (2) calculate the limits
based on the strategies and pass them to the extended MPI
version (see Sec. V), and (3) aggregate the collected data and
write them out to a file. The first two points contribute to the
overhead peri-runtime, while the last point results in overhead
post-runtime. In all our experimental runs in Sec. VI, both
types contributed to less than 9% of the total runtime. Fig-
ure 5 presents the runtime information about HACC-IO from
Sec. VI-B. As observed, the overhead contributes only slightly
to the total runtime of the application. This becomes even
clearer when the runtime distribution in Figure 6 is considered.
The figure also distinguishes between the overhead during
(peri-) runtime and after (post-) the application run. Note that
overhead post-runtime is calculated during MPI Finalize. As
observed in Figure 6, the peri-runtime overhead is negligible
and lies below 0.1%. In contrast, the overhead post-runtime
increases with the number of ranks due to the increased
communication effort. However, this overhead is present since
we want to visualize the results. Hence, this overhead can also
be discarded if the collected metrics are not saved. Note that,
aside from writing the data out, the library can also send the
data via TCP (via ZeroMQ [37]) to avoid creating a file.

As shown in Figure 6, the application seems to become
more compute-intensive as the percentage of visible I/O (syn-
chronous I/O and asynchronous I/O during the waiting calls)

Fig. 5. Runtime variation of HACC-IO up till 9216 MPI ranks.

Fig. 6. Total time distribution of HACC-IO with the direct strategy (run 0)
and without the bandwidth limitation (run 1) for various rank configurations.

decreases. However, this is only true for the case without limit
(run 1), as the majority of I/O in case the throughput is limited
(run 0) is done behind the scenes as shown later in Sec. VI-B.

E. Implementation

Using the LD PRELOAD mechanism, we can link the
library TMIO easily to an executable. Thus, we can extract the
requirements easily without modifying the application code.
Specific MPI calls are intercepted using the PMPI interface
to extract metrics like the start time and bytes transferred
during the MPI-IO operations. Moreover, the request complete
calls like MPI Wait and its derivatives are also intercepted to
determine the length of the available time window. As we want
to provide the I/O requirements of HPC applications to other
bandwidth-limiting approaches, we decided not to implement
it as a part of the extended MPICH version used in this paper
(see Sec. V). Note that linking the library by including its
headers is also possible to control the flushing of the data
further. However, we avoid this opinion in this paper.

V. MPI EXTENSION FOR BANDWIDTH LIMITATION

One of the contributions of this paper is to feature I/O band-
width limitations for individual applications without modifying
them. Therefore, we have limited the scope to considering
only applications that rely on the MPI framework for their
I/O operations. However, the main ideas behind this imple-
mentation can be easily applied to other I/O frameworks. We
used MPICH, which is a widely used MPI implementation.
MPICH relies on the ROMIO implementation for the MPI-IO
subset. One of ROMIO’s best features is to provide a flexible
architecture that allows easy integration of new I/O drivers
and file systems. This is achieved through a modular design
that separates the I/O driver and file system layers from the
rest of the code. Those inner layers are accessed through their
interface called ADIO. ADIO (Advanced I/O) is a collection
of library functions in ROMIO that provide an optimized I/O
interface for parallel applications.

Ultimately, the ROMIO modular architecture comes in
handy for our purposes. The separation between the MPI-I/O
interface calls and the ADIO inner calls offers a neat opportu-
nity to implement bandwidth limitations for synchronous and
asynchronous I/O operations. This was done as follows: First,
all MPI-IO calls have been modified to intercept ADIO calls

431

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



related to synchronous/asynchronous read/write operations.
Second, a server/client scheme redirects all read/write ADIO
calls to a new thread that performs all these operations.
The thread and all the client/server-related tools (like mutex
and conditions) are created using the inner facilities of the
MPICH framework. This makes the implementation platform
independent. Third, the I/O thread implements all read/write
operations synchronously. Despite this, from the application’s
point of view, an asynchronous I/O operation is carried out
as this realization permits overlapping the compute and I/O
phases. Fourth, we created a new MPI generalized request
object to notify the end of an asynchronous operation. This
object is returned when the I/O call ends so the program can
perform a wait operation. The I/O thread will notify the end of
the I/O operation through this MPI generalized request object.

MPI generalized request is a mechanism in the MPI li-
brary that enables the implementation of custom asynchronous
operations. It allows users to create non-blocking commu-
nication and I/O operations that are not supported by the
standard MPI operations. To create a generalized request,
the MPI Grequest start function is used. This call returns
an MPI Request object that tracks the progress of the non-
blocking operation. The function MPI Grequest complete no-
tifies the end of the operation through the MPI Request object.
As mentioned, the I/O thread limits the bandwidth of the I/O

operations. It performs the following operations:
1) The request is divided into several sub-requests of prede-

fined size. If the request is smaller than that value, then
it’s just executed.

2) For every sub-request, the thread calculates the time
required to perform it. This is done using the value of the
required bandwidth limit and the size of the sub-request
being read or written. That is: ∆ti,j =

Bi,j

bi,j
.

3) The thread performs each sub-request as a blocking
operation. Once done, the thread compares the actual ex-
ecution time with the required time calculated previously.
There are two scenarios:
• Case A: If the execution time is shorter than the

required time, the thread will sleep until completing
the required time.

• Case B: If the execution time is longer than the
required time, the thread will accumulate the difference
and use it to reduce the sleeping time.

Two steps are required to leverage the application with these
features: (1) the application has to use the modified version of
the MPICH framework (once compiled and installed). (2) the
application executable has to be linked to the intercepting
library TMIO using the LD PRELOAD mechanism. Thus, the
application’s code is not modified, but the application needs
to be recompiled to use the modified MPI framework.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate our methodology on an
HPC cluster in production mode using two use cases: (1) the
WaComM++ CFD kernel and (2) the HACC-IO benchmark,

which are described below. All experiments were executed on
the Lichtenberg cluster, where the typical node has 96 cores,
and the access mode is user-exclusive. The shared file system
(IBM Spectrum Scale) has a peak performance of 106 GB/s
for writes and 120 GB/s for reads.

A. WaComM++

WaComM++ (Water Community Model) is a pollutant
transport and diffusion model that operates over the model
outputs. It uses a Lagrangian model to simulate marine
pollutants’ transport and diffusion processes. WaComM++ is
a component of the Environment Application workflow that
produces operational weather and marine forecasts and/or on-
demand ad-hoc environmental simulations for scenarios and
what-if analysis [38]. It is characterized by a parallelization
schema based on hierarchical and heterogeneous computation
and has been designed with hierarchical parallelism in mind.
Nevertheless, some requirements have been strongly driven by
the transport and diffusion Lagrangian model, such as the need
for data exchange using standard and well-known formats. For
each time interval to simulate (i.e., one hour), the total number
of particles is distributed between the available processors in
an MPI-distributed memory fashion. Each processor distributes
its duty between the available threads leveraging OpenMP. In
the original version of WaComM++, rank 0 reads particle
information at the start of the application and writes the
results in several files at the end of the application. In some
cases, a new read operation is executed after every hour of
simulation to include new particles in the model. We modified
WaComM++ to write the particles asynchronously in every
simulation iteration. The last write I/O operations are still
synchronous, as there is no opportunity to overlap I/O with
the computational phase. We selected 2 ∗ 106 particles and 50
iterations for all following experiments.

Figure 7 shows the time distribution of WaComM++ for an
increasing number of MPI ranks (from 24 to 6144 ranks). We
executed six runs (as indicated on the x-axis), such that each
two runs had the same settings: runs 0 and 1 with the direct
strategy and tol = 2, runs 2 and 3 with the up-only strategy and
tol = 1.1, and runs 4 and 5 without bandwidth limitation. As
illustrated, several I/O bursts occur, which pollute the filesys-
tem with unnecessary short accesses. As observed, the runs
with our bandwidth-limiting approach achieve higher parallel
efficiency by performing asynchronous I/O (write) during the
computational phases. For all runs, the time spent during the
asynchronous I/O matching wait calls was negligible, except
for the run with 384 ranks, where this value reached 1.9%
during run 3. Moreover, the async write exploit, which shows
the percentage from the runtime where asynchronous I/O
operations were performed in the background of computational
or communicational operations, is higher in the experiments
with our limiting approaches. Typically, the runs with the
direct strategy would reach higher exploitation values than
those with the up-only strategy. However, due to different
tolerance values between the strategies, the direct strategy
(runs 0 and 1) reaches, in most cases, lower exploitation

432

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Application time distribution of WaComM++ with the direct strategy (runs 0 and 1) with a tol = 2, with the up-only strategy (runs 2 and 3) with a
tol = 1.1, and without bandwidth limitation (runs 4 and 5).

values than the up-only strategy (runs 2 and 3). Moreover, one
can see that this exploitation is decreasing with an increasing
number of ranks, up to 3072 ranks, where the values start to
increase again. Note that we aggregated the collected rank-
level metrics to calculate the values in Figure 7. For example,
for the asynchronous write exploit time, we aggregated the
difference between ∆ti,j and ∆t′i,j for positive values over
all ranks i and phases j.

Figure 8 shows the experiment with 96 ranks and no
bandwidth limitation, corresponding to run 1. In contrast,
Figure 9 shows the result of our bandwidth limiting approach
with the up-only strategy (run 5). Even with the most over-
estimating method, the throughput is limited to a significantly
lower value. Moreover, as observed, the throughput T of the
next phase reaches the specified limit BL from the previous
phase. Note that, as the approach is implemented on the
rank level, the notion of phases implies the asynchronous I/O
requests handled at the matching wait operations. The vertical
purple lines show when the limit is applied for the first time.

As mentioned in Sec. IV-B, the bandwidth limit is modified
according to the strategy used. That is, BL presents a usually
scaled value of B, the aggregated sum of the individual
required bandwidths Bi,j (see Sec. IV-C). Hence, B can be
seen as the lowest limit, so no waiting occurs. Ideally, the
throughput T should have a shorter duration than B on the
x-axis, such that no waiting occurs. Moreover, the height of
the throughput should not significantly exceed the B, as this
lowers the exploitation of the compute phases.

The results for large experiments with 9216 MPI ranks (96

Fig. 8. WaComM++ with 96 ranks without bandwidth limit.

Fig. 9. WaComM++ with 96 ranks and the up-only strategy. As the top part
shows, T follows the values of BL from the previous phases. BL in the top
is calculated from B shown in the lower part of the figure. In every phase,
T ends before B, indicating no blocking I/O.

Fig. 10. WaComM++ with 9216 ranks. The result of using the up-only strategy
(top) and no bandwidth limit (bottom) are shown.

433

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



nodes) are shown in Figure 10. The top part of the figure
presents the results with the up-only strategy, while the bottom
shows the results without the bandwidth-limiting approach.
For the first case, the exploitation reaches 57% in contrast to
the 3.9% obtained with the latter (i.e., without the approach).
Moreover, while both cases result in nearly no waiting times
(i.e., a disadvantage for the application), the first case results
in a small speedup (≈ 11.6%) to 113.4 s from 126.6 s. Note
that the bandwidth limit is applied on the rank level based on
the values captured from the previous iteration (see Sec. IV-B).
Out of the 50 iterations for this example, each rank applies
this limit for the first time at the start of the asynchronous I/O
operations during the second iteration. The vertical purple line
in the Figures 9 and 10 indicates the instance when the limit
is applied for the first time by the fastest rank that reaches and
executes the I/O operation during the second iteration.

B. HACC-IO

Next, we demonstrate our approach based on HACC-
IO [39], which mimics an I/O phase of HACC (Hybrid/Hard-
ware Accelerated Cosmology Code) [40]. From an abstract
view, HACC-IO fills arrays of different types with the current
index of a for loop, which iterates over the number of particles.
Next, a header (containing metadata information such as the
number of particles) and the arrays are written to a file.
Finally, the file’s contents are read again and compared against
the values of the variables still in memory. We classified
the portions of the application into four blocks in the same
order as described above: compute, write, read, and verify.
Moreover, we added a for loop around these blocks to execute
them several times. The vanilla version of HACC-IO supports
different settings for I/O. We used MPI-IO to write using
an individual file pointer to distinct files, which is more
challenging than collective I/O. Moreover, the header I/O
operations are done synchronously.

HACC-IO uses non-collective blocking I/O routines with
explicit offset (MPI File write at and MPI File read at),
which we replaced with matching non-collective non-blocking
I/O routines (MPI File iwrite at and MPI File iread at).
Moreover, we adjusted the code such that the read/write occurs
asynchronously to the compute/verify blocks as shown in

Fig. 12. The modified HACC-IO benchmark.

Figure 12. To avoid data races between the read and write
blocks, we used wait blocks (MPI Wait) at the end of the
compute and verify blocks. Moreover, to make the data from
one compute block available to the verify block of the same
phase, we create a copy of the data using memcpy. This block
is located at the end of the verify block, just before the wait
block. Finally, we added global broadcast operations during
the compute and verify phases for more variability.

Figure 11 shows the time distribution of HACC-IO with 10
loops and 106 particles per rank. Runs 0 and 1 are executed
with the direct strategy, 2 and 3 with the up-only strategy, 4 and
5 with the adaptive strategy, and 6 and 7 without bandwidth
limit. All bandwidth-limiting strategies use tol = 1.1. As
observed, while the exploitation of the compute phases by
the asynchronous write operations increases for all bandwidth-
limiting approaches, it decreases when no limiting approach is
used. Yet, as Figure 5 shows, the applications’ runtime doesn’t
significantly change between the different runs. Since the
required bandwidth for this application increases (from nearly
0.7 GB/s to 58 GB/s) with an increasing number of processes
(from 1 to 9216 ranks), and the length of the phases increases
at the same time (from 0.6 s to 10 s), a higher number of ranks
is more favorable, as it provides I/O scheduling mechanisms
with more flexibility regarding regulating the bandwidth for
the applications with asynchronous I/O.

In Figure 13, the results of four experiments with 9216
ranks are shown. From top to bottom, the strategies direct
(run 1), up-only (run 3), and adaptive (run 4) are used.
The bottom figure doesn’t use the limiting approach (run 7).
As observed, nearly no waiting time at all occurs. While
all bandwidth-limiting approaches achieve good exploitation
of the compute phase (see Figure 11), the up-only strategy
achieves lower values as higher limits are set compared to the

Fig. 11. Application time distribution of HACC-IO with the direct strategy (runs 0 and 1), up-only strategy (runs 2 and 3), adaptive strategy (runs 4 and 5),
and without bandwidth limitation (runs 6 and 7). All strategies use the same tolerance value (tol = 1.1).

434

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 13. HACC-IO with 9216 ranks. From top to bottom, the figures show
the results for the strategies direct, up-only, and adaptive, respectively. The
bottom one is without bandwidth limitation. The vertical purple lines indicate
when the limit is applied for the first time by the fastest rank.

other two strategies. Compared to the result without bandwidth
limitation, not only have we reduced the I/O burst significantly,
but we also exploited the compute phases effectively. Yet, as
can be seen in Figure 5 (App time) or in Figure 14 (e.g., with
1536 ranks), the limit applied with, for example, the direct
strategy is not reached due to I/O variations like congestion
or slow I/O resulting in short waiting times, which prolonged
the runtime slightly. This is depicted by the throughput T ,
which is outside the green region B. To alleviate such cases,
a global view and coordination of the I/O system is needed to
ensure the application can either attain the required bandwidth
or that all bytes in the phase are transferred in time. As
our library provides the required bandwidth alongside other
metrics (length of the phase per rank or transferred bytes), we
plan to develop such solutions in the future. Furthermore, for
asynchronous I/O, the application performance can increase

Fig. 14. HACC-IO with 1536 ranks and the direct strategy.

at the expense of I/O throughput, as we have observed in this
work. This is possible due to less competition for resources at
the beginning of the phases, as other works also observed [33].
We plan to examine this in the future. Also, we plan to im-
prove the strategies for estimating the bandwidth requirements.
Depending on the strategy (see Sec. IV-B), Bi,j is scaled and
used to limit Ti,j+1, which helps in dealing with changing
behavior. Nevertheless, this can be further improved by using,
for example, a most frequently used table of accesses.

VII. RELATED WORK

There are several ways to perform asynchronous I/O. Two
well-known standard implementations on Linux machines are
the POSIX asynchronous I/O (POSIX-AIO) [41] and the ker-
nel native asynchronous I/O (kernel-AIO) [42]. POSIX-AIO
delegates synchronous I/O operations to a pool of threads [43].
In Linux, POSIX-AIO is provided in the user space by
glibc [44]. The kernel-AIO provides an implementation at the
kernel level with a set of system calls (io setup, io submit,
etc. [44]). These system calls are independent of the set
of typical synchronous system calls [43] and come with a
set of features like the ability to reorder or combine the
individual requests of a batched I/O to optimize the disk
activity [42]. Moreover, as the kernel-AIO uses asynchronous
queue-based system requests [45], it can prevent oversat-
urating the system (e.g., compared with POSIX-AIO with
threads). Still, there are some limitations associated with
the O DIRECT flag and file systems support [43], [46]. A
recently added alternative to Linux 5.1 that promises better
performance is io uring [46], which uses ring buffers shared
between the user and kernel space. However, reliability and
compatibility need more investigation as it almost rebuilds the
traditional asynchronous I/O stack and the asynchronous I/O
interfaces of applications [47]. MPI-IO implementations, such
as ROMIO [48], use POSIX-AIO to realize asynchronous I/O.
POSIX-AIO makes background progress typically by spawn-
ing a thread. Moreover, ROMIO uses extended generalized
MPI requests [49] to query the state of pending asynchronous
I/O operations without spawning a new thread. Spawning a
thread once an asynchronous I/O routine is called to ensure the
operations are executed asynchronously is nothing new [50].
Our approach, however, uses this thread to additional limit
the bandwidth. Still, there are several challenges associated

435

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



with asynchronous I/O. For example, asynchronous I/O can
cause resource contention (CPU, memory bandwidth, network
bandwidth, etc.), as background I/O threads can compete with
application threads for resources [33]. As our approach is im-
planted on the MPI level, this low-level information cannot be
captured precisely. While this depends on the implementation,
we aim to address this with future work.

Recent work in HPC has also focused on improving asyn-
chronous I/O further by deploying user-level threads that
support non-data operations [35], [51]. Additionally, high-level
libraries, such as ADIOS [52], [53], provide asynchronous I/O
support using staging nodes, and file systems like LWFS [54]
offer asynchronous I/O support at the file-system level. The
VOL connector [35], for instance, provides asynchronous
I/O support for HDF5. Other approaches provide routines
to convert I/O system calls into asynchronous calls [55].
Compared to these works, our approach does not focus on
improving asynchronous I/O, but rather the parallel efficiency
of the application through utilizing different system resources
simultaneously. Moreover, we do not focus on implementing
asynchronous I/O, as we rely on ROMIO, which handles
this using MPI generalized requests. Our approach requires
no code modification; our library is simply preloaded, and
the application is compiled and launched with our modified
MPICH version. As several tools often rely on MPI-IO, they
can implicitly benefit from our library, aligning with our future
goals, which we plan to investigate.

A typical pattern with asynchronous I/O is to submit the
request as early as possible and check the request status later
[35]. several studies focused on overlapping asynchronous I/O
with other phases [50], [56], but only at small scale. Other
tools [57] use a burst buffer file system and move the data
to the PFS asynchronously or propose I/O libraries that take
advantage of the modern hierarchical storage systems [58],
[59]. Compared to these works, our approach does not rely on
additional hardware in the I/O stack.

I/O bursts can lead to severe I/O inefficiency [9]–[12]. Sev-
eral works have been devoted to reduce I/O contention through
QoS approaches [5], [17]–[22], [25], [60], redesigning the I/O
stack using caching approaches [29], using burst buffers [32],
[61], proposing I/O bandwidth-sharing strategies [62], or in-
troduce QoS from the application side [31]. Compared to these
solutions, We do not provide a QoS approach as it is difficult
to achieve from a single application perspective. Rather, our
approach restricts the maximal bandwidth consumption of the
application to what is needed to execute the asynchronous
I/O unnoticed, sparing the bandwidth of the system to other
applications that demand more bandwidth. Additionally, QoS
approaches can still be combined with ours, as our limitation
only applies to the case where the current bandwidth is
higher than what is needed. Moreover, the required bandwidth
could also be forwarded to these approaches, which is the
intention behind providing a standalone library. Furthermore,
while our limitation strategies target a single application, our
methodology could be integrated into approaches that strive to
balance I/O globally [62], enabling such strategies to exploit

the spared bandwidth.
The quest to understand, predict, and optimize I/O per-

formance in HPC systems has been pursued by numerous
researchers [8], [63]–[66]. In this context, monitoring software
offers means to profile applications to analyze and understand
I/O performance and identify bottlenecks and optimization
potentials. The HPC domain is rich with I/O monitoring soft-
ware like TAU [67], Darshan [68], recorder [69], Score-P [70],
Scalasca [71], and many more. While several of these tools
are not limited to I/O only, tools like Darshan have specialized
in I/O (POSIX I/O, MPI-IO, etc.). Compared to other work,
our objective is not to provide a tracing or profiling tool.
Rather, we capture asynchronous I/O data online to calculate
the required bandwidth. This is done by examining individual
requests using the PMPI interface of a single application. This
paper described how TMIO captures several metrics associated
with asynchronous I/O and applies bandwidth-limiting strate-
gies using a modified MPICH version. Yet, the library also
supports online and offline synchronous I/O tracing. Targeting
synchronous I/O behavior, the tool has been recently used
together with FTIO (frequency techniques for I/O) to predict
online or detect offline the I/O phases of an application [72].

Several studies focused on modeling and predict I/O perfor-
mance in HPC [8], [63]–[66], [73], [74]. However, none fo-
cused on asynchronous I/O in their models. While a recent ap-
proach builds performance models based on past iterations of
an application [23], it focuses on high-level libraries (HDF5)
and only estimates the cost associated with asynchronous I/O.
Our approach not only finds the throughput and required
bandwidth, but it can also limit the throughput to the required
bandwidth, as demonstrated. Note that the captured data can be
aggregated over the ranks to produce application-level metrics
(e.g., total bandwidth) online or offline through flags.

VIII. CONCLUSION

This paper presented an approach to identify the I/O require-
ments of HPC applications that use asynchronous I/O. With
the requirements at hand, our approach automatically limits the
bandwidth at the user level, reducing I/O bursts and potential
I/O congestion in the system while increasing the parallel
efficiency of the application. This higher resource utilization is
achieved while minimally, if at all, impacting the application
runtime. We proposed different strategies that, depending on
the risks they take (i.e., the tolerance value), can achieve
higher or lower exploitation of the compute phases through
asynchronous I/O. Future work will include integrating the
setup with a system supporting malleability to even further
enhance resource utilization, applying sophisticated strategies
for calculating the bandwidth limits, and proposing a similar
definition for synchronous I/O in the presence of burst buffers.

As mentioned in the introduction (see Sec. I), TMIO and the
modified version of MPICH are publicly available on GitHub.
The repository3 describes how to reproduce the results and
experiments from this paper. Furthermore, the data sets from
the experiments are publicly available [75].

3https://github.com/tuda-parallel/TMIO/tree/main/artifacts/cluster24

436

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] “The TOP500 List,” https://www.top500.org/, 2024.
[2] W. Hu, G.-m. Liu, Q. Li, Y.-h. Jiang, and G.-l. Cai, “Storage wall

for exascale supercomputing,” Frontiers of Information Technology &
Electronic Engineering, vol. 17, no. 11, pp. 1154–1175, Nov. 2016.

[3] L. Wan, A. Huebl, J. Gu, F. Poeschel, A. Gainaru, R. Wang, J. Chen,
X. Liang, D. Ganyushin, T. Munson, I. Foster, J.-L. Vay, N. Podhorszki,
K. Wu, and S. Klasky, “Improving I/O performance for exascale appli-
cations through online data layout reorganization,” IEEE Transactions
on Parallel and Distributed Systems, vol. 33, no. 4, pp. 878–890, Apr.
2022.

[4] S. Liu, L. Huang, H. Liu, A. Ruhela, V. Trueheart, S. Lindsey, and
Q. Yuan, “Practice guideline for heavy I/O workloads with lustre file
systems on TACC supercomputers,” in Practice and Experience in
Advanced Research Computing, ser. PEARC ’21. New York, NY, USA:
Association for Computing Machinery, 2021.

[5] T. Patel, R. Garg, and D. Tiwari, “GIFT: A coupon based throttle-and-
reward mechanism for fair and efficient I/O bandwidth management
on parallel storage systems,” in Proceedings of the 18th USENIX
Conference on File and Storage Technologies, ser. FAST’20. USA:
USENIX Association, 2020, pp. 103–120.

[6] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms, M. Prabhat,
S. Byna, and Y. Yao, “A multiplatform study of I/O behavior on petascale
supercomputers,” in Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed Computing, ser. HPDC
’15. New York, NY, USA: Association for Computing Machinery,
2015, pp. 33–44.

[7] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Using formal gram-
mars to predict I/O behaviors in HPC: The Omnisc’IO approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 8, pp.
2435–2449, 2016.

[8] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. S. Vazhkudai, and F. Wang, “Interpreting write performance of
supercomputer I/O systems with regression models,” in 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2021, pp. 557–566.

[9] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. Miller, D. Long, and
T. McLarty, “File system workload analysis for large scale scientific
computing applications,” United States, Jan. 2004.

[10] S. Oral, J. Simmons, J. Hill, D. Leverman, F. Wang, M. Ezell, R. Miller,
D. Fuller, R. Gunasekaran, Y. Kim, S. Gupta, D. T. S. S. Vazhkudai, J. H.
Rogers, D. Dillow, G. M. Shipman, and A. S. Bland, “Best practices
and lessons learned from deploying and operating large-scale data-
centric parallel file systems,” in SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2014, pp. 217–228.

[11] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Server-side
log data analytics for I/O workload characterization and coordination
on large shared storage systems,” in SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2016, pp. 819–829.

[12] J. Yu, W. Yang, F. Wang, D. Dong, J. Feng, and Y. Li, “Spatially
bursty I/O on supercomputers: Causes, impacts and solutions,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 12, pp.
2908–2922, 2020.

[13] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Automatic
identification of application I/O signatures from noisy server-side traces,”
in Proceedings of the 12th USENIX Conference on File and Storage
Technologies, ser. FAST’14. USA: USENIX Association, 2014, p.
213–228.

[14] B. Xie, J. S. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and
N. Podhorszki, “Characterizing output bottlenecks in a supercomputer,”
in Conference on High Performance Computing Networking, Storage
and Analysis (SC). USA: IEEE, Nov. 2012.

[15] A. Miranda, A. Jackson, T. Tocci, I. Panourgias, and R. Nou, “NORNS:
Extending slurm to support data-driven workflows through asynchronous
data staging,” in 2019 IEEE International Conference on Cluster Com-
puting (CLUSTER). USA: IEEE, Sep. 2019, pp. 1–12.

[16] M.-A. Vef, N. Moti, T. Süß, M. Tacke, T. Tocci, R. Nou, A. Miranda,
T. Cortes, and A. Brinkmann, “GekkoFS - A temporary burst buffer
file system for HPC applications,” Journal of Computer Science and
Technology, vol. 35, no. 1, pp. 72–91, 2020.

[17] Y. Qian, X. Li, S. Ihara, L. Zeng, J. Kaiser, T. Süß, and A. Brinkmann,
“A configurable rule based classful token bucket filter network request
scheduler for the lustre file system,” in SC17: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2017, pp. 1–12.

[18] J. Carretero, E. Jeannot, G. Pallez, D. E. Singh, and N. Vidal, “Mapping
and scheduling HPC applications for optimizing I/O,” in Proceedings of
the 34th ACM International Conference on Supercomputing, ser. ICS
’20. New York, NY, USA: Association for Computing Machinery,
2020.

[19] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC applications under congestion,” in 2015
IEEE International Parallel and Distributed Processing Symposium,
May 2015, pp. 1013–1022.

[20] S. Karki, B. Nguyen, and X. Zhang, “QoS support for scientific work-
flows using software-defined storage resource enclaves,” in 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2018, pp. 95–104.

[21] Y. Hua, X. Shi, H. Jin, W. Liu, Y. Jiang, Y. Chen, and L. He, “Software-
defined QoS for I/O in exascale computing,” CCF Transactions on High
Performance Computing, vol. 1, no. 1, pp. 49–59, May 2019.

[22] Y. Qian, X. Li, S. Ihara, L. Zeng, J. Kaiser, T. Süß, and A. Brinkmann,
“A configurable rule based classful token bucket filter network request
scheduler for the lustre file system,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC). New York, NY, USA: Association for Computing
Machinery, Nov. 2017.

[23] J. Ravi, S. Byna, Q. Koziol, H. Tang, and M. Becchi, “Evaluating
asynchronous parallel I/O on HPC systems,” in 2023 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2023, pp. 211–
221.

[24] Z. Qiao, Q. Liu, N. Podhorszki, S. Klasky, and J. Chen, “Taming
I/O variation on QoS-Less HPC storage: What can applications do?”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020, pp. 1–13.

[25] R. Macedo, M. Miranda, Y. Tanimura, J. Haga, A. Ruhela, S. L.
Harrell, R. T. Evans, J. Pereira, and J. Paulo, “Taming metadata-
intensive HPC jobs through dynamic, application-agnostic QoS control,”
in 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and
Internet Computing (CCGrid). Bangalore, India: IEEE, May 2023, pp.
47–61.

[26] C. Daley, D. Ghoshal, G. Lockwood, S. Dosanjh, L. Ramakrishnan, and
N. Wright, “Performance characterization of scientific workflows for the
optimal use of burst buffers,” Future Generation Computer Systems, vol.
110, pp. 468–480, 2020.

[27] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “CALCioM:
Mitigating I/O interference in HPC systems through cross-application
coordination,” in 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. Phoenix, AZ, USA: IEEE, May 2014, pp. 155–
164.

[28] T. Patel, S. Byna, G. K. Lockwood, and D. Tiwari, “Revisiting I/O be-
havior in large-scale storage systems: The expected and the unexpected,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New York,
NY, USA: Association for Computing Machinery, 2019.

[29] Y. Qian, X. Li, S. Ihara, A. Dilger, C. Thomaz, S. Wang, W. Cheng,
C. Li, L. Zeng, F. Wang, D. Feng, T. Süß, and A. Brinkmann, “LPCC:
Hierarchical persistent client caching for lustre,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[30] J. Lüttgau, S. Snyder, P. Carns, J. M. Wozniak, J. Kunkel, and T. Ludwig,
“Toward understanding I/O behavior in HPC workflows,” in 2018
IEEE/ACM 3rd International Workshop on Parallel Data Storage &
Data Intensive Scalable Computing Systems (PDSW-DISCS), 2018, pp.
64–75.

[31] L. Huang and S. Liu, “OOOPS: An innovative tool for IO workload
management on supercomputers,” in 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS), 2020, pp.
486–493.

[32] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn, “On the role of burst buffers in leadership-class storage
systems,” in 2012 IEEE 28th Symposium on Mass Storage Systems and

437

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



Technologies. Los Alamitos, CA, USA: IEEE Computer Society, Apr.
2012, pp. 1–11.

[33] S.-M. Tseng, B. Nicolae, F. Cappello, and A. Chandramowlishwaran,
“Demystifying asynchronous I/O Interference in HPC applications,” The
International Journal of High Performance Computing Applications,
vol. 35, no. 4, pp. 391–412, Jul. 2021.

[34] T. Özden, T. Beringer, A. Mazaheri, H. M. Fard, and F. Wolf, “Elastisim:
A batch-system simulator for malleable workloads,” in Proceedings
of the 51st International Conference on Parallel Processing, ser. ICPP
’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3545008.3545046

[35] H. Tang, Q. Koziol, J. Ravi, and S. Byna, “Transparent asynchronous
parallel I/O using background threads,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 891–902, Apr. 2022.

[36] MPI Forum, “MPI: A message-passing interface standard,” Jun. 2021.
[37] ZeroMQ developers, “ZeroMQ: An open-source universal messaging

library.” [Online]. Available: https://zeromq.org/
[38] R. Montella, D. Di Luccio, P. Troiano, A. Riccio, A. Brizius, and

I. Foster, “WaComM: A parallel water quality community model for
pollutant transport and dispersion operational predictions,” in 2016 12th
International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS). IEEE, 2016, pp. 717–724.

[39] LLNL, “CORAL benchmark codes - HACC IO,” 2020. [Online].
Available: https://asc.llnl.gov/coral-benchmarks#hacc

[40] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel, N. Frontiere, and Z. Lukic, “The
Universe at extreme scale: Multi-petaflop sky simulation on the BG/Q,”
in 2012 International Conference for High Performance Computing,
Networking, Storage and Analysis. Salt Lake City, UT: IEEE, Nov.
2012, pp. 1–11.

[41] S. R. Walli, “The POSIX family of standards,” StandardView, vol. 3,
no. 1, pp. 11–17, Mar. 1995.

[42] S. Bhattacharya, S. Pratt, B. Pulavarty, and J. Morgan, “Asynchronous
I/O support in linux 2.5,” in Proceedings of the Linux Symposium, 2003,
pp. 371–386.

[43] A. Roca Nonell, V. Beltran Querol, and S. Mateo Bellido, “Introducing
the task-aware storage I/O (TASIO) library,” in OpenMP: Conquering
the Full Hardware Spectrum, X. Fan, B. R. de Supinski, O. Sinnen, and
N. Giacaman, Eds. Cham: Springer International Publishing, 2019, vol.
11718, pp. 274–288.

[44] “Aio(7) - Linux manual page,” https://man7.org/linux/man-
pages/man7/aio.7.html.

[45] F. Schmaus, F. Fischer, T. Hönig, and Schröder-Preikschat, Wolfgang,
“Modern concurrency platforms require modern system-call techniques,”
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Tech. Rep.,
2021.

[46] J. Axboe, “Efficient IO with io uring,” Retrieved April 06, 2022 from
https://kernel.dk/io uring.pdf, 2019.

[47] D. Li, N. Zhang, M. Dong, H. Chen, K. Ota, and Y. Tang, “PM-AIO:
An effective asynchronous I/O system for persistent memory,” IEEE
Transactions on Emerging Topics in Computing, pp. 1–1, 2021.

[48] R. Thakur, W. Gropp, and E. Lusk, “On implementing MPI-IO portably
and with high performance,” in Proceedings of the Sixth Workshop on
I/O in Parallel and Distributed Systems - IOPADS ’99. Atlanta, Georgia,
United States: ACM Press, 1999, pp. 23–32.

[49] R. Latham, W. Gropp, R. Ross, and R. Thakur, “Extending the MPI-
2 generalized request interface,” in Recent Advances in Parallel Virtual
Machine and Message Passing Interface, ser. Lecture Notes in Computer
Science, F. Cappello, T. Herault, and J. Dongarra, Eds. Berlin,
Heidelberg: Springer, 2007, pp. 223–232.

[50] C. M. Patrick, S. Son, and M. Kandemir, “Comparative evaluation of
overlap strategies with study of I/O overlap in MPI-IO,” SIGOPS Oper.
Syst. Rev., vol. 42, no. 6, pp. 43–49, Oct. 2008.

[51] H. Tang, Q. Koziol, S. Byna, J. Mainzer, and T. Li, “Enabling transparent
asynchronous I/O using background threads,” in 2019 IEEE/ACM Fourth
International Parallel Data Systems Workshop (PDSW), Nov. 2019, pp.
11–19.

[52] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar, N. Sam-
atova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu, “Hello
ADIOS: The challenges and lessons of developing leadership class I/O
frameworks: HELLO ADIOS,” Concurrency and Computation: Practice
and Experience, vol. 26, no. 7, pp. 1453–1473, May 2014.

[53] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in Proceedings of the 6th International Workshop
on Challenges of Large Applications in Distributed Environments, ser.
CLADE ’08. New York, NY, USA: Association for Computing
Machinery, 2008, p. 15–24. [Online]. Available: https://doi.org/10.1145/
1383529.1383533

[54] R. A. Oldfield, L. Ward, R. Riesen, A. B. Maccabe, P. Widener, and
T. Kordenbrock, “Lightweight I/O for scientific applications,” in 2006
IEEE International Conference on Cluster Computing, Sep. 2006, pp.
1–11.

[55] K. Elmeleegy, A. Chanda, A. L. Cox, and W. Zwaenepoel, “Lazy
asynchronous I/O for event-driven servers,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’04.
USA: USENIX Association, 2004, p. 21.

[56] S. Zhou, A. Oloso, M. Damon, and T. Clune, “Application controlled
parallel asynchronous IO,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, ser. SC ’06. New York, NY, USA:
Association for Computing Machinery, 2006, pp. 178–es.

[57] B. Dong, S. Byna, K. Wu, Prabhat, H. Johansen, J. N. Johnson, and
N. Keen, “Data elevator: Low-contention data movement in hierarchical
storage system,” in 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC), 2016, pp. 152–161.

[58] T. Alturkestani, T. Tonellot, H. Ltaief, R. Abdelkhalak, V. Etienne, and
D. Keyes, “MLBS: Transparent data caching in hierarchical storage
for out-of-core HPC applications,” in 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics
(HiPC), 2019, pp. 312–322.

[59] T. Alturkestani, H. Ltaief, and D. Keyes, “Maximizing I/O bandwidth
for reverse time migration on heterogeneous large-scale systems,” in
Euro-Par 2020: Parallel Processing, M. Malawski and K. Rzadca, Eds.
Cham: Springer International Publishing, 2020, pp. 263–278.

[60] X. Zhang, K. Davis, and S. Jiang, “QoS support for end users of
I/O-intensive applications using shared storage systems,” in SC ’11:
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[61] M.-A. Vef, N. Moti, T. Süß, T. Tocci, R. Nou, A. Miranda, T. Cortes,
and A. Brinkmann, “GekkoFS - A temporary distributed file system for
HPC applications,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 319–324.

[62] A. Benoit, T. Herault, L. Perotin, Y. Robert, and F. Vivien,
“Revisiting I/O bandwidth-sharing strategies for HPC applications,”
INRIA, Tech. Rep. RR-9502 v3, Mar. 2023. [Online]. Available:
https://inria.hal.science/hal-04038011

[63] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: A
grammar-based approach to spatial and temporal I/O patterns predic-
tion,” in SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov. 2014,
pp. 623–634.

[64] R. McKenna, S. Herbein, A. Moody, T. Gamblin, and M. Taufer,
“Machine learning predictions of runtime and IO traffic on high-end
clusters,” in 2016 IEEE International Conference on Cluster Computing
(CLUSTER), Sep. 2016, pp. 255–258.

[65] B. Xie, Z. Tan, P. Carns, J. Chase, K. Harms, J. Lofstead, S. Oral,
S. S. Vazhkudai, and F. Wang, “Applying machine learning to un-
derstand write performance of large-scale parallel filesystems,” in
2019 IEEE/ACM Fourth International Parallel Data Systems Workshop
(PDSW), Nov. 2019, pp. 30–39.

[66] P. J. Pavan, J. L. Bez, M. S. Serpa, F. Z. Boito, and P. O. A. Navaux,
“An unsupervised learning approach for I/O behavior characterization,”
in 2019 31st International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), Oct. 2019, pp. 33–40.

[67] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, May 2006.

[68] S. Snyder, P. Carns, K. Harms, R. Ross, G. K. Lockwood, and N. J.
Wright, “Modular HPC I/O characterization with darshan,” in 2016 5th
Workshop on Extreme-Scale Programming Tools (ESPT), Nov. 2016, pp.
9–17.

[69] C. Wang, J. Sun, M. Snir, K. Mohror, and E. Gonsiorowski, “Recorder
2.0: Efficient parallel I/O tracing and analysis,” in 2020 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2020, pp. 1–8.

438

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 



[70] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm,
D. Eschweiler, M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E.
Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A joint per-
formance measurement run-time infrastructure for periscope, scalasca,
tau, and vampir,” in Tools for High Performance Computing 2011,
H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, Eds. Berlin,
Heidelberg: Springer, 2012, pp. 79–91.

[71] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr, “The scalasca performance toolset architecture,” Concurrency
and Computation: Practice & Experience, vol. 22, no. 6, pp. 702–719,
Apr. 2010.

[72] A. Tarraf, A. Bandet, F. Boito, G. Pallez, and F. Wolf, “Capturing
periodic I/O using frequency techniques,” in 2024 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), San Francisco,
CA, USA, May 2024, pp. 465–478.

[73] M. R. Meswani, M. A. Laurenzano, L. Carrington, and A. Snavely,
“Modeling and predicting disk I/O time of HPC applications,” in
2010 DoD High Performance Computing Modernization Program Users
Group Conference, 2010, pp. 478–486.

[74] B. Behzad, S. Byna, Prabhat, and M. Snir, “Optimizing I/O performance
of HPC applications with autotuning,” ACM Transactions on Parallel
Computing, vol. 5, no. 4, Mar. 2019.

[75] A. Tarraf, J. F. Muñoz, D. E. Singh, T. Özden, J. Carretero, and
F. Wolf, “I/O behind the scenes [data set],” Zenodo, Jul. 2024. [Online].
Available: https://doi.org/10.5281/zenodo.12700677

439

Authorized licensed use limited to: ULB Darmstadt. Downloaded on May 06,2025 at 09:12:39 UTC from IEEE Xplore.  Restrictions apply. 


