N)
)
Check for
updates

Dissecting Convolutional Neural Networks for Runtime and
Scalability Prediction

Tim Beringer
tim.beringer@tu-darmstadt.de
Technical University of Darmstadt
Darmstadt, Hesse, Germany

Arya Mazaheri
arya.mazaheri@tu-darmstadt.de
Technical University of Darmstadt
Darmstadt, Hesse, Germany

ABSTRACT

Given the computational complexity of deep neural networks (DNN),
accurate prediction of their training and inference time using perfor-
mance modeling is crucial for efficient infrastructure planning and
DNN development. However, existing methods often predict only
the inference time and rely on exhaustive benchmarking and fine
tuning, making them time consuming and restricted in scope. As a
remedy, we propose ConvMeter, a novel yet simple performance
model that considers the inherent characteristics of DNNs, such as
architecture, dataset, and target hardware, which strongly affect
their runtime and scalability. Our performance model, which has
been thoroughly tested on convolutional neural networks (Conv-
Nets), a class of DNNs widely used for image analysis, offers the pre-
diction of inference and training time, the latter on one or more com-
pute nodes. Experiments with various ConvNets demonstrate that
our runtime predictions of inference and training phases achieved
an average error rate of less than 20% and 18%, respectively, making
the assessment of ConvNets regarding efficiency and scalability
straightforward.

CCS CONCEPTS

« Computer systems organization — Neural networks; « Com-
puting methodologies — Modeling and simulation.

KEYWORDS

Artificial intelligence, deep neural networks, convolution, perfor-
mance modeling, distributed training, scalability

ACM Reference Format:

Tim Beringer, Jakob Stock, Arya Mazaheri, and Felix Wolf. 2024. Dissecting
Convolutional Neural Networks for Runtime and Scalability Prediction. In
The 53rd International Conference on Parallel Processing (ICPP °24), August
12-15, 2024, Gotland, Sweden. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3673038.3673107

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPP °24, August 12-15, 2024, Gotland, Sweden

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1793-2/24/08

https://doi.org/10.1145/3673038.3673107

168

Jakob Stock
jakob.stock@stud.tu-darmstadt.de
Technical University of Darmstadt

Darmstadt, Hesse, Germany

Felix Wolf
felix.wolf@tu-darmstadt.de
Technical University of Darmstadt
Darmstadt, Hesse, Germany

1 INTRODUCTION

Deep neural networks (DNN) and, in particular, convolutional neu-
ral networks (ConvNet) are the mainstream machine-learning meth-
ods for a wide variety of computer-vision tasks, such as image clas-
sification, object detection, and semantic segmentation. The reason
for their widespread use is their ability to achieve high accuracy
on various datasets, while requiring reasonable computational re-
sources. Moreover, their increasing success, even on edge devices
with relatively low computational resources, is largely derived from
a faster training infrastructure (e.g., DNN-specific training sched-
uler [15, 18]) and iterative DNN architecture improvement, either
manually [7] or automatically using neural architecture search
(NAS) [5] and design space exploration [19, 20]. NAS can signifi-
cantly reduce the time and effort required to design hardware-aware
DNNeE, yet requires extensive computational capacity due to larger
model sizes [2, 3, 28] or many rounds of trial trainings [16]. Addi-
tionally, DNN optimization methods such as network pruning and
quantization often require extra fine-tuning steps to recover some
of the lost performance by adjusting the remaining weights.

The effective operation of DNN training schedulers and NAS, as
well as most network optimization techniques, commonly depend
on or can profit from a performance prediction tool capable of pre-
cisely estimating the non-functional properties, such as training or
inference time and scaling factor. Performance modeling is a well-
known technique that involves developing mathematical models to
predict the performance of a workload under different conditions.
These models can help determine the appropriate hardware and
software resources required for a system to meet its performance
goals. Furthermore, recent DNN models and datasets have rapidly
increased in size, making low-cost prior estimation of runtime es-
sential for such methods and even for machine-learning developers
to choose the appropriate hardware setup for running or training
their DNNG. Particularly, an accurate performance model can assist
in reducing the training cost by choosing the training parameters
(e.g., batch size, number of computing devices) and the computing
infrastructure, such as cloud instances.

Existing DNN-specific performance models are limited in their
capability, as they mainly focus on predicting only the inference
time of the overall DNN without a detailed analysis of the con-
stituent blocks—a crucial feature needed by NAS methods. More-
over, many of the existing methods are based on empirical per-
formance modeling [10, 30, 32], requiring numerous data points

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-1783-172X
https://doi.org/10.1145/3673038.3673107
https://doi.org/10.1145/3673038.3673107
https://doi.org/10.1145/3673038.3673107
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673038.3673107&domain=pdf&date_stamp=2024-08-12

ICPP °24, August 12-15, 2024, Gotland, Sweden

collected from the target device to train their model. Therefore,
these methods incur a significant modeling cost to the user, an
investment that might need to be repeated for each new hardware
or DNN configuration. Such drawbacks triggered the following
research questions:

e Can we obtain a holistic DNN performance model capable
of predicting both training and inference time?

e Can we leverage the inherent characteristics of a DNN to
simplify performance modeling?

e Can we predict the DNN training scalability in a distributed
environment using a performance model?

In this paper, we answer the above questions for convolutional
neural networks (ConvNets), a class of DNNs widely used for im-
age analysis, by introducing ConvMeter, a novel yet simple perfor-
mance model. Our performance model predicts the training and
inference time of ConvNets in single-node and distributed training
schemes. In contrast to existing methods, we use ConvNet metrics,
such as inputs, activations, and FLOPs, that can be easily computed
without running the ConvNet. We demonstrate that a simple perfor-
mance model, relying neither on advanced techniques like machine
learning nor extensive blind benchmarking, can predict ConvNet
runtimes with reasonably high accuracy. Furthermore, our method
does not require multiple iterations of benchmarks to fine-tune the
prediction model. The structure of the performance model adapts
well to the desired target hardware, as the tunable coefficients
capture the overall runtime performance differences between dif-
ferent hardware platforms, and the previously mentioned ConvNet
metrics adapt to the differences between the memory bandwidth
and computational performance of the device. Our experiments
validate that our method achieves notable accuracy for predicting
both inference and training time on different hardware (i.e., CPUs
and GPUs) and node setups (i.e., single node or multiple nodes).
Moreover, the performance analysis can be used for analyzing the
scalability of ConvNets. In essence, this paper makes the following
major contributions:

e The identification of inherent ConvNet metrics (FLOPs, In-
puts, and Outputs) as the foundation of efficient yet effective
performance prediction without extensive benchmarking.

o A simple yet accurate performance model for ConvNets that
enables the runtime prediction of DNN inference and train-
ing on CPUs or GPUs.

e Scalability prediction of distributed training as a function of
the number of computing devices and the batch size.

2 BACKGROUND

Modern ConvNets consist of recurring blocks with multiple lay-
ers (convolutional, pooling, fully connected). Convolution opera-
tions are usually followed by batch normalization and activation
functions. As networks increase in depth, they require more pa-
rameters, leading to longer training and inference times. Further-
more, convolutional layers are the most time-consuming layers
during computation, as they apply a filter on an image tensor with
size B X Cip X Hijp X Wi and produce an output with the size of
B X Cout X Hout X Wour, where B is the batch size, C(;;, o,s) are
input/output channels, and {H, W};, ous} are input/output image
size.

169

Tim Beringer, Jakob Stock, Arya Mazaheri, and Felix Wolf

(o}

Forward ‘

o}

Forward ‘

Filesystem

Backward

o]

Training step i+1

Backward

]

Training step i

Update ‘

L

Computation Update

=

Communication

Figure 1: Visualization of a synchronous training step and
its phases [13]. IO: Reading the (mini-)batch for the next
training step. B: Bucket, consisting of gradient updates.

DNN training consists of iteratively adjusting a deep network’s
parameters for a given dataset until the obtained model achieves
the desired accuracy. Although the training can be performed us-
ing a single processor (e.g. GPU), it is often required to scale the
training to multiple processors/nodes to accommodate large DNNs
or datasets that would take many days to be processed. Distributed
DNN training employs different types of parallelism to train large-
scale models effectively. However, within the scope of this paper,
we mainly focus on data parallelism with weak scaling as one of
the preferred methods to expand the training of ConvNets to mul-
tiple GPUs. Within this method, the parameters are synchronized
with the other devices, using various techniques such as parameter
server or all-reduce strategy. All-reduce strategy is more widely
used in distributed training due to its faster convergence, scalabil-
ity, low communication overhead, and flexibility. Horovod [24], for
instance, is a distributed deep learning framework that supports an
all-reduce strategy for large-scale model training.

During the training, the dataset is processed multiple times,
where each pass is called an epoch. In data parallelism, the dataset is
split into equally-sized portions called batches within an epoch. As
described by Pauloski et al. [13] and shown in Figure 1, each training
step in processing a batch consists of three phases. During the
forward pass, a DNN calculates its output based on the input data by
traversing the network graph and computing each layer. The output
is then compared to the expected output using a loss function, which
measures the difference between the predicted and actual outputs.
In the backward pass, also called backpropagation, the network
computes the gradients of the loss function with respect to the
weights of each layer in the opposite direction to the forward pass.
These gradients are then used to update the network weights and
can be synchronized once computed. One forward pass, backward
pass, and weight update constitute a training step in which the
network gradually learns to minimize the loss function and improve
its accuracy on the training data. The main difference between a
forward pass and a DNN inference is that a forward pass also
requires gradients to be stored.

The number of images of the dataset and the batch size deter-
mines the number of training steps of an epoch. We describe the
runtime of an epoch as follows:

Tepoch = Titer,

BXN

where D is the dataset size, B is the batch size per computing
device, N is the number of computing devices, and Tje, is the time
to compute a training step. Each computing device computes a mini-
batch consisting of B/N elements of the dataset. D/B training steps
per epoch are distributed among N computing devices, leading to
D/(BN) iterations.

Dissecting Convolutional Neural Networks for Runtime and Scalability Prediction

3 APPROACH

Given the computing steps involved in the inference and training
phases of deep-learning models that we described in Section 2, we
propose a performance model that is simple to build while yielding
relatively high accuracy for estimating the training and inference
time. In particular, we focus on convolutional neural networks
(ConvNets) and include their metrics in the performance model.
Moreover, for accurate training-time prediction, we include dataset
and training configuration. Such an approach enables generalization
to many new unseen models without the necessity to collect a large
dataset. It is worth noting that the same analogy can potentially be
applied to other deep-learning model categories with minor effort,
such as language models, vision transformers, and different training
parallelization strategies.

We further use the same parameterized performance model for
multiple devices to support a broader range of target platforms,
changing only platform-specific coefficients within the performance
model. In the following, we describe our performance model for
ConvNets.

To estimate the iteration time in the training phase, we decom-
pose an iteration to its most time-consuming steps, namely forward
pass, backward pass, and gradient update. Similar to Pei et al. [14],
the sum of these three phases yields the total iteration time:

1

The inference time of a deep-learning model is basically a simple
forward pass Tgyq, Wwhose performance model we describe in Sec-
tion 3.1. We argue that the time required to run each of the above
steps (Trwds Towds> and Tgraq) can be modeled using linear regression
given the following ConvNets metrics.

Inputs I: The input tensor size is typically fixed for a given model
architecture. The sum of the input tensor size of all convolutional
layers represents the memory and processing requirements of the
network.

Outputs (or activations) O: The sum of the output tensor size
of all convolutional layers. It represents the complexity and total
number of features that are extracted by the model from the input
data.

FLOPs F: The number of floating point operations of all layers
serving as a hardware-independent metric for the computational
complexity of a given network.

Weights W: The number of weights determines the memory re-
quirements and the speed of the network.

Layers L: The number of layers of the model, where larger values
denote a more complex network with a higher network depth.

Titer = Trwd + Towd + Tgrad

Considering that the majority of a ConvNet’s runtime is attrib-
uted to its convolutional layers, we calculate the inputs and outputs
of a ConvNet by parsing its computational graph and summing the
metrics for each convolutional layer. Based on the input and output
tensor size of each convolutional layer, we compute the FLOPs of a
convolution without considering any optimization techniques or
actual hardware implementation. Furthermore, inputs, outputs, and
FLOPs scale linearly with the batch size. Therefore, we can count
these metrics for a single batch size and multiply each with a desired
batch size later. This way, recounting these metrics when predicting
different batch sizes is not required. Additionally, having the batch

170

ICPP °24, August 12-15, 2024, Gotland, Sweden

Inputs
20
m
£ 10
(]
£
< 04 :
3
> Outputs Combined
8 o
=
10 - o
0 L T T
0 10

Predicted time (ms) Predicted time (ms)

Figure 2: Inference time prediction of various state-of-the-art
ConvNets based on FLOPs, inputs, outputs, and their combi-
nation. Combining all three metrics leads to the most accu-
rate prediction.

size as a parameter in our performance model enables simulating
the batch size behavior for larger values, even in scenarios where
the batch sizes exceed the memory of a device. Simulating large
batch sizes can provide insights into how the training could scale on
a different device with more memory or the effects of optimizations
such as gradient accumulation.

We modeled data parallelism, as it is the primary distribution
strategy for ConvNets, but ConvMeter can be extended to support
other parallelization strategies, such as model parallelism, by lever-
aging ConvMeter’s capability to predict subgraphs or blocks of DL
models, as demonstrated in Section 4.1.2

3.1 Forward pass prediction

Previous work mainly used FLOPs to predict the runtime of Conv-
Nets [17]. However, performance modeling solely based on FLOPS
turned out to be an unreliable indicator for inference time. Recent
work [4] showed that a ConvNet’s outputs (activations) highly cor-
relate with the inference time on memory-bound processors, as
the outputs reflect the relative time of storing the results on the
device memory. Based on our experiments, we found out that a
combination of inputs, outputs, and FLOPs leads to an even more
accurate prediction. Combining these metrics incorporates the time
it takes to load the inputs of convolutional layers, compute the
results, and store them back to the device’s memory.

Figure 2 visualizes the predicted inference times based on FLOPs,
inputs, outputs, and their combination. We can see that combining
the three metrics leads to the most accurate prediction. FLOPs alone
are an inadequate predictor of memory-bound processors, as read-
ing and writing the tensors of convolutional layers heavily affects
the runtime. Either inputs or outputs alone are also insufficient to
predict the inference time, as some models tend to have a dispropor-
tionate size of tensors as inputs. The output tensor size of each layer
tends to increase throughout most ConvNets. However, DenseNet’s

ICPP °24, August 12-15, 2024, Gotland, Sweden

input tensor sizes increase while the output tensor remains un-
changed within each block. Thus, only considering outputs does
not capture such a change in the input tensor size.

The advantage of our analytical model is that hardware details
are not incorporated directly into the mathematical expression, and
the hardware impact on performance is captured via benchmarking
and the coefficients in the regression model. We opted for the linear
regression method for simplicity and also due to its reasonably high
performance within our context. Unlike DNN-based performance
modeling techniques [6, 10, 23], which necessitate extensive train-
ing data and numerous epochs to converge, ConvMeter is able to
model the performance with reasonable accuracy and much less
effort. Our performance model for estimating the forward pass
runtime of ConvNets is defined as follows:

@
where ¢, 4 are tunable platform-specific coefficients. Once the
performance model is tuned for a target device, evaluating the term
based on the ConvNet metrics yields the forward pass time. As pre-
viously mentioned, the ConvNet metrics scale proportionally with
the batch size. Therefore, we can add the batch size as a parameter
to the performance model by factoring it out from Equation 2.

Trwd = ¢1 - FLOPs + ¢z - Inputs + c3 - Outputs + ¢4,

Tfwd = b(cq - FLOPsp=; +c2 - Inputsg_; +c3 - Outputsg_;) + ¢4 (3)

The ConvNet metrics Inputs, Outputs, and FLOPs are for batch size
equal to one, and b = B/N is the mini-batch size.

Block-wise forward pass time prediction: The same ap-
proach for predicting the inference of the entire model also applies
to individual blocks within a ConvNet.

As blocks are subsets of neural networks, they are small neural
networks themselves, to which we can apply our previously defined
inference time performance model.

3.2 Backward-pass prediction

We reuse the same performance model as in the forward pass. Only
the platform-specific coefficients need to be tuned based on the
measured time of each backward pass. The backward pass tends to
take longer as it needs to store the gradient updates during the back-
ward propagation. This additional computation will be captured by
performing the linear regression based on the corresponding data
from the measured backward pass time. A significant optimization
available in Horovod is to start synchronizing the gradient updates
during the backward propagation. Instead of waiting until all gra-
dient updates are computed and wasting time, the tensor fusion
method synchronizes gradients once they are computed. For only
predicting the backward propagation, we can fit the coefficients to
Equation 2 based on the backward pass runtimes. However, to pre-
dict the entire training time, we must also incorporate the gradient
update time, as discussed in the next section.

3.3 Gradient update prediction

We design a performance model for the gradient update using
all-reduce synchronization, where a ring-all-reduce pattern syn-
chronizes all local updates. The time to perform this step scales
with the number of layers within a model, as frameworks such

171

Tim Beringer, Jakob Stock, Arya Mazaheri, and Felix Wolf

as Horovod synchronize the gradient updates in a per-layer way.
In a distributed training scenario, the gradient update scales with
the number of physical nodes in addition to the layers, posing a
bottleneck during a network synchronization between computing
devices within and between a node. The performance model for
the gradient update is, therefore, a linear function that can be fitted
using linear regression and has the form:

c1-L N=1

T, ¢ci-L+cy - W+ces-N N>1"~

grad = {

where ¢;,_3 are coefficients that need to be tuned for a target
platform. If only one computing device is used for training, the
number of layers is sufficient for the gradient update prediction,
as the gradient updates are synchronized per layer. To predict the
runtime of multiple nodes, we also need to consider the size of the
model represented by the number of parameters and the number of
nodes, as inter-node communication poses the bottleneck during
synchronization.

As mentioned, in practice, the gradient update is not an isolated
phase during the training step and overlaps with the backward
pass. To capture this behavior, we apply linear regression to our
backward pass and gradient update equation combined using the
sum of the backward pass and gradient update measurements. For
the combined backward pass and gradient update, seven coefficients
are required to be fitted based on the data.

3.4 Determining platform-specific coefficients

To determine the coefficients of our inference and training perfor-
mance model, we first perform hardware benchmarking for various
state-of-the-art ConvNet models on a target device to collect the
runtime data. Our benchmark runs each selected model with vari-
ous input image sizes and batch sizes. For the gradient update, we
measure the runtime of the same set of ConvNets with different
numbers of computing devices and computing nodes. We use linear
regression to compute the coefficients for the performance models
based on the measurements. For the training performance model,
we must compute the coefficients of all three phases summed in
Equation 1. For the inference time performance model, we only need
to compute the four coefficients of the forward pass in Equation 2.

Our performance modeling method incurs a relatively small
overhead, as we only need to compute and store a few coefficients.
Moreover, using a simple linear-regression method is faster and
more efficient than using complex machine-learning methods used
in previous work.

4 EXPERIMENTAL RESULTS

We analyze the accuracy and effectiveness of ConvMeter on vari-
ous hardware platforms and different conditions. Particularly, we
investigate the performance of ConvNets in training and inference
phases and demonstrate their scalability to different numbers of
nodes and batch sizes. Additionally, we compare ConvMeter with a
state-of-the-art prediction model for inference.

Dissecting Convolutional Neural Networks for Runtime and Scalability Prediction

Experimental setup

Hardware and software setup. We evaluated our inference pre-
diction on two different platforms containing CPU and GPU pro-
cessors. The workstation has two Intel Xeon Gold 5318Y processors
and four NVIDIA A100 GPUs, each with 80 GB of memory. The
HPC cluster comprises GPU nodes, each equipped with two AMD
EPYC 7402 processors and four NVIDIA A100 GPUs. Each compute
node has four HDR-200 InfiniBand network cards for inter-node
communication. We run the DNNs on a single CPU core and a single
A100 GPU to evaluate the inference prediction. We use PyTorch for
all inference measurements. For single-GPU and distributed train-
ing, we deploy Horovod with PyTorch and Adam as the optimizer
method. NVIDIA NCCL performs GPU-to-GPU communication
within and between computing nodes, utilizing the InfiniBand and
NVLink connections on the cluster.

Benchmarks. We measure the inference and training runtime to
tune the coefficients of our performance model on each device and
collect less than 5,000 different data points for each inference and
training scenario. These benchmarks include batch sizes from one
to 2048 and image sizes from 32 to 224 pixels, as long as the available
memory on the target system allows. We used a wide variety of
ConvNet models, ranging from large and generic ones such as
AlexNet, VGG [26], ResNets [7], and ResNexts [29] to optimized and
mobile-friendly ones, including SqueezeNet [9], MobileNet [8, 22],
EfficientNet [27], and RegNets [21]. All models have a distinct
architecture, memory usage, and computational intensity, serving as
a representative cross-section of most deep convolutional networks.
Furthermore, to model the scalability of the training phase in a
multi-node distributed environment, we benchmarked the training
configuration using different numbers of nodes. In the following
sections, we report error statistics for each ConvNet separately.
To obtain the error rates per ConvNet, we develop a performance
model for each ConvNet, excluding its own data from the training
set to ensure unbiased evaluation and accurate prediction accuracy.
Metrics. We assess and report the accuracy of ConvMeter using
various metrics, including R? and root mean square error (RMSE),
normalized root mean square error (NRMSE), and mean absolute
percentage error (MAPE). Despite sharing the common goal of
assessing the performance of a linear regression model in relation
to a given dataset, these key metrics differ in their specific functions.
RMSE provides an absolute measure of the accuracy of a regression
model’s response variable prediction, while R? focuses on the extent
to which predictor variables explain variability in the response
variable. We provide the raw RMSE value as an absolute error rate
in addition to a relative RMSE normalized by the range of the data
points. On the other hand, MAPE measures the average absolute
difference between the predicted and actual values in percent, where
large and small errors in the predictions are considered equally
important.

In addition to the quantitative metrics above, we provide a scatter
plot showing the correlation between prediction and measured
values. These plots contain all data points obtained during the
evaluation.

172

ICPP °24, August 12-15, 2024, Gotland, Sweden

Table 1: The correlation and error values of our prediction
per ConvNet for a single-CPU and single-GPU inference.

Network CPU inference GPU inference
RMSE | NRMSE | MAPE | RMSE | NRMSE | MAPE

mobilenet_v2 0.79s | 0.17 0.15 0.08s | 0.16 0.11
resnet18 0.56s | 0.26 0.21 0.04s | 0.14 0.17
resnet50 0.51s | 0.07 0.22 0.09s | 0.12 0.13
resnext50_32x4d | 0.69s | 0.08 0.27 0.06s | 0.09 0.10
wide_resnet50_2 | 0.48 s | 0.10 0.15 0.02s | 0.03 0.06
vgglo 0.83s | 0.17 0.18 0.03s | 0.03 0.14
regnet_y_400mf | 0.22s | 0.59 0.62 0.15s | 0.27 0.25
squeezenetl_0 0.12s | 0.23 0.52 0.03s | 0.09 0.26
vggll 0.23s | 0.22 0.21 0.11s | 0.13 0.21

4.1 Inference-phase modeling

ConvMeter is capable of predicting the runtime for the entire model
inference and even the constituting blocks of the ConvNets. Such
fine-grained runtime information is particularly useful for neural
architecture search and network optimization methods to spot and
tune the network’s bottlenecks [3]. For both aspects, we analyze the
accuracy of ConvMeter by comparing the measured inference time
on the target device with our prediction. All runtime predictions
for a given device use the same coefficients, as we use the same
data points from all ConvNets to fit the coefficients. Using all data
points ensures a generalized performance model for all ConvNets,
capable of predicting new unseen ConvNets without extra tuning
steps or limiting our performance model to specific cases (e.g., a
fixed batch size).

4.1.1 Entire model time prediction. Figure 3 shows the correlation
between actual inference time and prediction on CPU and GPU
backends using different batch and image sizes. We achieve the
highest prediction accuracy on the CPU backend with R? of 0.98,
an RMSE of 0.59 s, an NRMSE of 0.13 and a MAPE of 0.25. Notable
prediction results on the Nvidia A100 GPU, where R? is 0.96, the
RMSE is 8.8 ms, the NRMSE is 0.13, and the MAPE is 0.17, suggest
a strong predictive performance of the model. Table 1 shows the
full breakdown of the evaluated ConvNets. Obtaining such a high
prediction accuracy on two different platforms demonstrates that
ConvMeter can perfectly capture the essential effects of hardware
on the inference time of various deep networks.

We observe that some models, such as AlexNet, have a signifi-
cantly lower execution time despite the image and batch size due
to their lower computational complexity. On the other hand, the
ResNet family of models scales well with larger input sizes.

4.1.2 Block-wise time prediction. As mentioned earlier, ConvMeter
can be easily adapted to predict the required time to run individ-
ual blocks that repeat throughout the structure of deep networks.
To demonstrate this feature, we selected a number of blocks from
different ConvNets and compared the predicted time with the mea-
sured runtimes. Table 2 lists the blocks used and the corresponding
ConvNets they are from. The implementation of these blocks is
from the ConvNets available in Torchvision 0.14.0.

Figure 4 visualizes the relation between measured block runtime
and our prediction. The prediction achieves a correlation R? = 0.997,
an RMSE of 0.67 ms, an NRMSE of 0.15, and a MAPE of 0.16. Table 2

ICPP °24, August 12-15, 2024, Gotland, Sweden

CPU Inference

GPU Inference

Tim Beringer, Jakob Stock, Arya Mazaheri, and Felix Wolf

GPU block-wise Inference

200 1
102 4
— m I
z £ 150 £
Py £
Q o
£ £ £
ey s S 10 4
o = 100 s
= 4 1%
3 = =
n > =]
8 g)
= o 50 s
= = 100 4
0
0 5 10 15 20 25 0 50 100 150 200 S o ~
. . . . 10 10 10
Predicted time (s) Predicted time (ms)
Predicted time (ms)
mobilenet_v2 # resnext50.32x4d A regnet_y 400mf Bottleneckl # Bottleneckd A TnvertedResidual3
resnet18 ¢ wide_resnet50_2 squeezenetl 0 BasicBlock7 ® Conv2d-3x3 MBConv
resnet50 4+ vggl6 veggll B 4 + Inver idual2 ResBottleneckBlock3

Figure 3: Prediction accuracy of the inference time on Intel Xeon CPUs and

Nvidia A100 GPUs.

Table 2: The correlation and error values of our inference
time prediction for each block.

Network Metrics

Block Model source RMSE | NRMSE | MAPE
Bottleneck1 ResNeXt50-32x4d | 1.87 ms | 0.24 0.10
Bottleneck4 ResNet50 1.03ms | 0.12 0.10
Conv2d_3x3 InceptionV3 1.47 ms | 0.29 0.10
BasicBlock?7 ResNet18 0.42ms | 0.1 0.16
InvertedResidual2 MobileNetV3 0.59 ms | 0.49 0.2
ResBottleneckBlock3 | RegNet-X-8gf 0.31 ms | 0.05 0.09
Bottleneck9 Wide-ResNet50 0.16 ms | 0.06 0.14
MBConv EfficientNet-B0 0.28 ms | 0.30 0.3
InvertedResidual3 MobileNetV2 0.32 ms | 0.26 0.37

Table 3: The correlation and error values of our prediction per
ConvNet for a single-GPU scenario and distributed training
on multiple nodes.

Network Single-GPU training Distributed training
RMSE | NRMSE | MAPE RMSE | NRMSE | MAPE

vgglo 44.21ms | 0.28 0.18 51.7ms | 0.16 0.17
efficientnet_b0 273 ms | 0.22 0.15 29.88 ms | 0.15 0.12
regnet_y_400mf | 19.41ms | 0.14 0.13 38.57ms | 0.18 0.15
squeezenetl_0 10.1ms | 0.14 0.17 2498 ms | 0.18 0.13
alexnet 42.64 ms | 0.44 0.22 489 ms | 0.21 0.17
vggll 29.64ms | 0.27 0.28 38.61ms | 0.14 0.11
resnet18 17.41ms | 0.19 0.15 32.58 ms | 0.21 0.17
resnet50 2535ms | 0.21 0.21 25.01ms | 0.13 0.11

lists the correlation and error values for each tested block. The
maximum MAPE is 0.37 for MobileNet. Except for MobileNets
and EfficientNet, our prediction achieves MAPE error rates from
0.09 to 0.2. The accurate prediction of this model makes it suitable
for estimating the performance of single blocks during the design
process of ConvNets, such as in neural architecture search [3].

4.1.3 Comparison to SotA. We compared the inference prediction
accuracy of ConvMeter to that of the state-of-the-art DIPPM [23],
which we chose due to its recent development and its specific

dataset for A100 GPUs, identical to those used in our experiments.

173

Figure 4: Prediction accuracy of the block-
wise inference time on A100 80GB.

We employed a fixed image size of 128x128 pixels and varied batch
sizes from 16 to 2,000. The results are presented in Figure 6, where
the mean absolute percentage error (MAPE) and normalized root
mean square error (NRMSE) metrics are reported for both models.
DIPPM was unable to parse the model graph of squeezenet1_0,
making a comparison impossible for this architecture. ConvMeter
outperforms DIPPM across all scenarios, demonstrating improved
inference prediction accuracy.

4.2 Training-phase modeling

We evaluated the prediction for single-GPU training on a worksta-
tion using an Nvidia A100 GPU for a training step. To predict the
epoch time and the entire training time, we first need to predict
the time required for a training step and multiply this value by the
number of training steps. This factor is fixed and can be computed
using the dataset size, batch size, and the number of computing
devices as discussed in Section 3. In the following, we present the
training step time prediction because the entire training and epoch
time can directly be derived from that.

In Figure 5, we see minimal variation for the same ConvNet
with a MAPE of less than 0.28, as no network communication is
involved while updating the gradients. There is a higher deviation
of the forward pass prediction for low runtimes, mainly caused by
running small models with small batch and image sizes, resulting
in a low computational intensity and underutilization of the A100.
However, the prediction is more accurate for larger batch sizes,
which is usually desired during training. In total, our prediction
achieves an R? of 0.88, an RMSE of 29.38 ms, an NRMSE of 0.26,
and a MAPE of 0.18. The error values for each model are listed in
Table 3.

4.2.1 Distributed Training. To evaluate the prediction on multi-
ple nodes, we performed the same measurements with various
ConvNets and hyperparameters on a different number of nodes. As
shown in Figure 7, the training spends most of its time during the
backward pass and gradient update. The runtime of the backward
pass and gradient update is in the same plot, as both phases over-
lap. However, network communication causes much more variance
for the same training configuration, leading to more variance in

Dissecting Convolutional Neural Networks for Runtime and Scalability Prediction

ICPP °24, August 12-15, 2024, Gotland, Sweden

resnet18 resnet50 » efficientnet_b0 + vggl6 & regnet_y_400mf 4+ squeezenetl 0 vggll alexnet
Forward pass Backward pass & gradient update Entire training step
175 A 500 A 600 A
150 A i
= 400 500
€ 125 A
< 400 A
_g 100 4 300 1
- 300 1
£ 757 200
n 200 A
o 50 A
= 100 A
251 100 A
ot
04 * 0 A 0 A
0 25 50 75 100 125 150 175 0 100 200 300 400 500 0 100 200 300 400 500 600

Predicted time (ms)

Predicted time (ms)

Predicted time (ms)

Figure 5: Prediction accuracy of the three phases of a DL training step and the entire training step for various models on a
single A100 GPU. The entire training step is a combination of the forward pass, backward pass, and gradient update.

100
s DIPPM
75 - I ConvMeter
o
< 50+
=
25 1
0.
X (b. Q. 0. 0. b‘ . N.
< 2 7
& & L © ¢ q& rz,‘\’x q&
e &L & & e N s
N N ¢ g § &

Figure 6: MAPE error rates of ConvMeter (orange) compared
to the prediction model DIPPM [23] (blue). See Table 1 for
the full ConvNet names.

the measured data and, therefore, a less accurate prediction. We
see more variation for the forward and backward pass around the
regression line than for the single-GPU training. Although both
phases do not require synchronization, the synchronization from
the gradient update affects the runtime of these phases, as not all
devices simultaneously start their phases after the gradient update.

Similar to the single-GPU training, the prediction is more accu-
rate for larger image sizes and batch sizes, as they utilize the devices
more effectively. ConvMeter is much more accurate in predicting
the forward and backward pass, as no network communication is in-
volved, leading to less variance in the measured data. The gradient
update phase mainly scales with the model size and the allocated
nodes, leading to a higher computational overhead for smaller batch
sizes. Therefore, users typically maximize the per-device batch size
in distributed training before expanding the training to more GPUs
to reduce communication overhead. In other words, adding more
nodes to training while keeping the batch size unchanged increases
the communication overhead. Thus, we are mainly interested in
predicting larger batch sizes, and our prediction gets more accurate
as the batch size increases. Despite the considerable variance of
the gradient update prediction, the overall training step prediction
for all batch sizes achieves an R% of 0.78, an RMSE of 38.71 ms, an

174

NRMSE of 0.18, and a MAPE of 0.15. The exact numbers per model
are listed in Table 3.

4.3 Scalability analysis

ConvMeter can predict the runtime based on the number of com-
puting nodes. We can use this information to determine the turning
point when additional computing nodes do not lead to a significant
reduction in the training time. The increasing network overhead
and fixed computational load per computing node typically lead
to this diminishing return, but its turning point differs between
different DNNs and training parameters.

Figure 8 shows the scalability of different ConvNets for different
numbers of computing nodes with a fixed image size of 128x128
px and batch size of 64.

For this experiment, we measured the training time of eight
ConvNets with different numbers of nodes, batch, and image sizes.
Following the same approach as before, the ConvNet for each per-
formance model shown in Figure 8 was not present in the training
data set and is therefore unknown to the performance model. Al-
though we can observe some deviation from the measurements,
our prediction follows the same trend and preserves the scalability
of each ConvNet, also showing our performance model’s ability
to handle noise in the measured data. While most models follow a
more steep trajectory, Alexnet shows a more prominent diminish-
ing return, which our prediction correctly reflects. We believe that
the error rates reported for the training time prediction are reason-
ably useful within the context of training infrastructure planning
or task schedulers.

As explained in Section 3, ConvMeter has a parameter for the
batch sizes. This parameter enables the inference and training run-
time prediction of different batch sizes. Another hyperparameter
called learning rate is usually adjusted with the batch size, which
affects the time until the model converges. The learning rate is
multiplied in every iteration regardless of its value and does not
affect the epoch time and is, therefore, not included in our per-
formance model. We can predict the runtime even for batch sizes
that would exceed the capacity of the training device. Simulating
larger batch sizes can be valuable information for scheduling and

ICPP °24, August 12-15, 2024, Gotland, Sweden

6

Backward pass & gradient update

Tim Beringer, Jakob Stock, Arya Mazaheri, and Felix Wolf

& regnet_y_400mf 4+ squeezenetl 0 vggll alexnet

Entire training step

600 -

500 4

400 1

300 A

A"

. &?’:‘@"

200 4

100 A

0

resnet18 #® resnet50 m efficientnet_b0 + vggll
Forward pass
175 4 500
150
- 400 A
£ 1251
[}
€ 100 300 A
=
T 754
£ 200 A
o
S 501
= 100 A
251 W
04 °* 0
0

50 75 100 125 150 175 100

Predicted time (ms)

0

200

Predicted time (ms)

200 300 400 500 600

Predicted time (ms)

300 400 500 0 100

Figure 7: Prediction accuracy of the three phases of a training step and the entire training step for various models on multiple
A100 nodes. The entire training step is a combination of the forward pass, backward pass, and gradient update.

—— Real time Predicted time
regnet_y 400mf squeezenetl 0 vggll resnetl8
10.0 - g
o 15 A
g 75 6
.§ . 10 A
o 10 A 4
£ 50 4
[
21 i
25! : : A o5 : : : . : : A0 : : :
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Nodes Nodes Nodes Nodes
resnet50 efficientnet_bO vgglé alexnet
10.0 A 10 A
‘é 10.0 A
6 8-
S 7.5 1
2 7.51
[6
F 50+ 501 44
T T T T T T T T T T T T 4 L T T T T
2 4 6 8 2 4 6 2 4 6 8 2 4 6 8
Nodes Nodes Nodes Nodes

Figure 8: Throughput (images per second) prediction for different numbers of nodes and fixed batch size and image size. The
blue vertical lines show the standard deviation of the measured data.

potential hardware upgrades, as main memory is a common bottle-
neck in DNN training. Suppose we are interested in the scalability
of known models instead of predicting the runtime of unknown
models. In that case, we can tune the coefficients based on a specific
ConvNet of interest to predict its scalability more accurately. We
do not need to rerun benchmarks and can reuse the data and apply
the regression on the specific ConvNet instead of data points from
all ConvNets. Since our prediction works with a variable number of
nodes and batch sizes, we can predict both weak scaling and strong
scaling, as our performance model can predict the scaling behavior
of nodes for a fixed global batch size and the scaling behavior of
nodes for an increasing global batch size.

Figure 9 highlights that ConvMeter can predict how the train-
ing time scales for a given model and batch size. This model can

175

predict runtime for any batch size, extending beyond the batch
sizes included in our benchmark dataset, and is applicable even for
models not previously encountered. Additionally, the figure reveals
that the impact of increasing the batch size on throughput is not
uniform across different models. While most models exhibit good
scalability up to a batch size of 2048, both ResNet18 and SqueezeNet
demonstrate a more pronounced diminishing return at larger batch
sizes. Each model exhibits varying scalability [25] when it comes
to the impact of increasing batch size on training time, and our
prediction accurately captures this phenomenon.

5 RELATED WORK

Among the existing methods for performance prediction of DNNs,
most of them focus on predicting the inference or training time

Dissecting Convolutional Neural Networks for Runtime and Scalability Prediction

ICPP °24, August 12-15, 2024, Gotland, Sweden

—— Real time Predicted time
regnet_y 400mf squeezenetl_0 vggll resnetl8
80 A
= 60
3 40 A 60
S 40 A 20
3 40 A
£ 20
~ 20 T 20 -
0 T T T 0 T T T 0 T T T T 0 T T
0 500 1000 1500 0 500 1000 1500 0 250 500 750 1000 0 500 1000 1500
Batch size Batch size Batch size Batch size
resnet50 efficientnet_b0 vggle alexnet
140 A
o 20 120 A
_§' 20 A 5 100 4
81 0 T 80 -
8 60 4
= 40 A
20 A
0 T T T 0 T T T 0 T T T 0 T T T T
0 200 400 600 0 200 400 600 0 200 400 600 0 500 1000 1500 2000
Batch size Batch size Batch size Batch size

Figure 9: Throughput (images per second) prediction for each model using a fixed image size when increasing the batch size.
The blue vertical lines show the standard deviation of the measured data.

within a single computing node. Our work has surpassed this limita-
tion and is capable of providing accurate predictions for distributed
environments as well. As a big portion of the research has only
focused on inference-phase time prediction, we categorize the exist-
ing work based on its operation scope, either inference time alone
or inference time with or without training time. In contrast to most
related work, our work supports both scopes. Based on the available
information, we summarized the related work according to their
features in Table 4.

Inference-phase performance models. NeuralPower [1] estimates
the inference time, power, and energy consumption of ConvNets.
However, it was designed for simple architectures such as Alex-
Net [12] and VGG [26] and does not cover more complex and mod-
ern structures such as ResNet [7]. nn-Meter [32] predicts the in-
ference time of ConvNets by identifying the kernels running on
a target device during inference and building a prediction model
based on each kernel runtime estimation. However, nn-Meter re-
quires a lot of sampling data to work well and only estimates the
inference. DIPPM [23] predicts the inference latency, energy, and
memory usage of DL models by analyzing their graph structure.
Their performance model achieves very low error rates but requires
500 epochs of training on a large dataset. We compared our predic-
tion model to DIPPM in Section 4.1.3.

Training-phase performance models. Justus et al. [10] trained a
deep-learning model to predict the inference and epoch time of
DNNs. However, they only focused on single-device training. Pei et
al. [14] developed a model to predict multi-GPU training, but only
on a single node. PALEO [17] follows a similar analytical approach,
decomposing the runtime of each layer in reading the inputs, cal-
culating the results, and writing the results. However, it estimates
the runtime of each phase by dividing the load (data to read/write,

176

FLOPs to compute) by the relative performance of the device. As we
discussed earlier, only using the FLOPs does not reflect the complex
structures of modern ConvNets. ParaDL [11] predicts the perfor-
mance of a ConvNet training workload for different deep-learning
parallelization techniques and find bottlenecks. However, the pre-
diction will be confined to the given model and cannot predict
unseen models. Habitat [31] extends the performance prediction of
DNNs from an existing hardware setup to a new, different hardware
configuration. Habitat predicts the iteration time of DL training, but
lacks the capability to predict times for distributed training, and is
constrained to the specific batch size it was trained on. DNNPerf [6]
is another ML-based tool to predict the training time and GPU mem-
ory consumption of DNNs. Although it can predict unseen models,
it is tuned for a single computing node and, therefore, cannot model
distributed training.

In contrast to the methods above, our performance model can
predict the inference time of unseen models, constituent blocks,
and the training time on single GPUs and distributed systems. We
can further predict the scalability based on the batch size, one of the
most important hyperparameter for scaling deep-learning training.

6 CONCLUSION AND OUTLOOK

Performance modeling of DNNs has shown promising results in var-
ious applications, such as infrastructure planning and DNN design
optimization. In this paper, we proposed ConvMeter, a simple yet
effective performance model to predict the inference and training
time of ConvNets. We demonstrated the possibility of predicting
the runtime of ConvNets without complex machine-learning mod-
els or performance models that require extensive sampling and
multiple passes of fine tuning. Such complex approaches incur a
relatively large overhead in generating the prediction model, as
some require iterative tuning through adaptation phases [32] or

ICPP °24, August 12-15, 2024, Gotland, Sweden

Tim Beringer, Jakob Stock, Arya Mazaheri, and Felix Wolf

Table 4: Summarized comparison of our work with state-of-the-art methods. The column “Modeling effort” lists the required
data points, epoch time, or the training time to generate the performance model, if available.

Method Modelling technique | Modeling effort Inference prediction Training prediction
Block- Entire Single | Multiple | Multiple | Scalability
wise model GPU GPUs nodes analysis
NeuralPower [1] | Regression N/A - v - - - -
nn-Meter [32] Regression 1-4 days - v - - - -
DIPPM [23] MLP 200,000 points, 500 epochs - v - - - -
DNNPerf [6] MLP 200 epochs - - v v - -
Habitat [31] Wave scaling, MLP N/A - - v - - -
Justus et al. [10] | MLP 50,000 points, 300 epochs - - v v - -
Pei et al. [14] Analytical model N/A v v v v - -
PALEO [17] Analytical model N/A - v v v v -
ConvMeter Regression <5,000 data points v v v v v v
training a prediction model for hundreds of epochs [23]. In con- [4] Piotr Dollar, Mannat Singh, and Ross B. Girshick. 2021. Fast and Accurate Model

trast, our simpler approach only requires linear regression, and
building the performance model is significantly faster. ConvMeter
exploits the characteristics of ConvNets and the training scenario
to estimate the inference time and the main steps involved in the
training phase. Besides predicting the inference time of the entire
ConvNet, we demonstrated that ConvMeter can also predict the
runtime of constituent ConvNet blocks, which is helpful in the
ConvNet design process. Furthermore, we analyzed the scalability
of various ConvNets in terms of computing nodes and input batch
size using our performance model.

In future work, we aim to analyze other DNN, such as language
models and vision transformers, which are the current mainstream
deep-learning models in the research community, and different
parallelization strategies for distributed training. Moreover, we aim
to study edge processors and analyze our performance model on
such systems with limited resources.

ACKNOWLEDGMENTS

The German Federal Ministry of Education and Research (BMBF)
and the Hessian Ministry of Science and Research, Art and Culture
(HMWEK) supported our work as part of the NHR funding. We also
appreciate the computing time for the high-performance computer
Lichtenberg at the NHR Center NHR4CES@TUDa, which is finan-
cially supported by BMBF and HMWK. Furthermore, we would
like to thank the Gauss Centre for Supercomputing e.V. for provid-
ing computing time through the John von Neumann Institute for
Computing (NIC) on the GCS Supercomputer JUWELS at Jilich
Supercomputing Centre (JSC). In addition, we acknowledge the
funding received from BMBF Software Campus Program and the
German Research Foundation (DFG, Project No. 449683531).

REFERENCES

[1] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017.
NeuralPower: Predict and Deploy Energy-Efficient Convolutional Neural Net-
works. CoRR abs/1710.05420 (2017). arXiv:1710.05420

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once
for All: Train One Network and Specialize it for Efficient Deployment. In Proc. of
International Conference on Learning Representations (ICLR).

Han Cai, Ligeng Zhu, and Song Han. 2019. ProxylessNAS: Direct Neural Archi-
tecture Search on Target Task and Hardware. In Proc. of International Conference
on Learning Representations (ICLR).

[2

=

177

—_
2

[10

[11

(12]

[13

[14

[15

[16]

[18

[19

I
=

Scaling. CoRR abs/2103.06877 (2021). arXiv:2103.06877

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architec-
ture Search: A Survey. Journal of Machine Learning Research 20, 1 (jan 2019),
1997-2017.

Yanjie Gao, Xianyu Gu, Hongyu Zhang, Haoxiang Lin, and Mao Yang. 2023.
Runtime Performance Prediction for Deep Learning Models with Graph Neural
Network. In Proc. of 2023 IEEE/ACM 45th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 368-380.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.
Le, and Hartwig Adam. 2019. Searching for MobileNetV3. CoRR abs/1905.02244
(2019). arXiv:1905.02244

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1IMB model size. CoRR abs/1602.07360 (2016). arXiv:1602.07360
Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
2018. Predicting the Computational Cost of Deep Learning Models. CoRR
abs/1811.11880 (2018). arXiv:1811.11880

Albert Njoroge Kahira, Truong Thao Nguyen, Leonardo Bautista Gomez, Ryousei
Takano, Rosa M. Badia, and Mohamed Wahib. 2021. An Oracle for Guiding Large-
Scale Model/Hybrid Parallel Training of Convolutional Neural Networks. In Proc.
of the International Symposium on High-Performance Parallel and Distributed
Computing. 161-173.

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. CoRR abs/1404.5997 (2014). arXiv:1404.5997

J Gregory Pauloski, Lei Huang, Weijia Xu, Kyle Chard, Ian T Foster, and Zhao
Zhang. 2022. Deep Neural Network Training With Distributed K-FAC. IEEE
Transactions on Parallel and Distributed Systems 33, 12 (2022), 3616-3627.
Zigian Pei, Chensheng Li, Xiaowei Qin, Xiaohui Chen, and Guo Wei. 2019. Itera-
tion Time Prediction for CNN in Multi-GPU Platform: Modeling and Analysis.
IEEE Access 7 (2019), 64788-64797.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, Chen Meng, and Wei Lin.
2021. DL2: A Deep Learning-Driven Scheduler for Deep Learning Clusters.
IEEE Transactions on Parallel and Distributed Systems 32, 8 (2021), 1947-1960.
https://doi.org/10.1109/TPDS.2021.3052895

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Effi-
cient neural architecture search via parameters sharing. In Proc. of International
Conference on Machine Learning (ICML). PMLR, 4095-4104.

Hang Qi, Evan R. Sparks, and Ameet Talwalkar. 2017. Paleo: A Performance
Model for Deep Neural Networks. In Proc. of International Conference on Learning
Representations (ICLR).

Aurick Qiao, Willie Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and
Eric P. Xing. 2020. Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized
Deep Learning. CoRR abs/2008.12260 (2020). arXiv:2008.12260

Ilija Radosavovic, Justin Johnson, Saining Xie Wan-Yen Lo, and Piotr Dollar.
2019. On Network Design Spaces for Visual Recognition. In Proc. of International
Conference on Computer Vision (ICCV).

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollar. 2020. Designing Network Design Spaces. In Proc. of IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

https://arxiv.org/abs/1710.05420
https://arxiv.org/abs/2103.06877
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1905.02244
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1811.11880
https://arxiv.org/abs/1404.5997
https://doi.org/10.1109/TPDS.2021.3052895
https://arxiv.org/abs/2008.12260

Dissecting Convolutional Neural Networks for Runtime and Scalability Prediction

Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr
Dollar. 2020. Designing Network Design Spaces. CoRR abs/2003.13678 (2020).
arXiv:2003.13678

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. 2018. Inverted Residuals and Linear Bottlenecks: Mobile
Networks for Classification, Detection and Segmentation. CoRR abs/1801.04381
(2018). arXiv:1801.04381

Panner Selvam, Karthick, and Mats Brorsson. 2023. DIPPM: A Deep Learning
Inference Performance Predictive Model Using Graph Neural Networks. In Proc.
of Euro-Par 2023: Parallel Processing, José Cano, Marios D. Dikaiakos, George A.
Papadopoulos, Miquel Pericas, and Rizos Sakellariou (Eds.). 3-16.

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).
Christopher J. Shallue, Jaehoon Lee, Joseph M. Antognini, Jascha Sohl-Dickstein,
Roy Frostig, and George E. Dahl. 2018. Measuring the Effects of Data Parallelism
on Neural Network Training. CoRR abs/1811.03600 (2018).

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In Proc. of 3rd International Conference
on Learning Representations (ICLR), Yoshua Bengio and Yann LeCun (Eds.).
Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. CoRR abs/1905.11946 (2019). arXiv:1905.11946

ICPP °24, August 12-15, 2024, Gotland, Sweden

[28] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming

Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2018. FBNet:
Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture
Search. CoRR abs/1812.03443 (2018). arXiv:1812.03443

Saining Xie, Ross B. Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He.
2016. Aggregated Residual Transformations for Deep Neural Networks. CoRR
abs/1611.05431 (2016). arXiv:1611.05431

Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Compu-
tational Performance Predictions for Deep Neural Network Training: A Runtime-
Based Approach. CoRR abs/2102.00527 (2021). arXiv:2102.00527

Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady Pekhimenko. 2021. Habi-
tat: A Runtime-Based Computational Performance Predictor for Deep Neural
Network Training. In Proc. of 2021 USENIX Annual Technical Conference (USENIX
ATC 21). 503-521.

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang,
and Yunxin Liu. 2021. nn-Meter: Towards Accurate Latency Prediction of Deep-
Learning Model Inference on Diverse Edge Devices. In Proc. of the 19th Annual
International Conference on Mobile Systems, Applications, and Services. ACM, New
York, NY, USA, 81-93.

https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1812.03443
https://arxiv.org/abs/1611.05431
https://arxiv.org/abs/2102.00527

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Forward pass prediction
	3.2 Backward-pass prediction
	3.3 Gradient update prediction
	3.4 Determining platform-specific coefficients

	4 Experimental Results
	4.1 Inference-phase modeling
	4.2 Training-phase modeling
	4.3 Scalability analysis

	5 Related Work
	6 Conclusion and outlook
	Acknowledgments
	References

