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ABSTRACT
With the rapidly increasing size and complexity of DNNs, equally
sophisticated methods are needed to train them efficiently, includ-
ing distributed training and various model/hybrid parallelism ap-
proaches. Even though developers heavily rely on state-of-the-art
frameworks such as PyTorch and TensorFlow, these provide little
insight into an application’s training behavior at scale, leading to
latent performance bottlenecks and inefficient training configu-
rations. We propose Extra-Deep, an automated empirical perfor-
mance modeling approach for distributed deep learning to model
performance metrics, such as the training time, as a function of the
applications’ configuration parameters. We leverage the created
models to analyze a training task’s performance, scalability, effi-
ciency, and cost. Gathering empirical measurements of full training
runs is very laborious and costly. Therefore, we employ an efficient
sampling strategy that reduces the profiling time for the required
empirical measurements by, on average, about 94.9%. Using our
sampling strategy, we can analyze the performance behavior and
identify cost-effective training configurations even for large-scale
and long-running applications. We evaluated our approach on three
parallelization strategies, with four DNN models and five datasets.
The results show that Extra-Deep has an average prediction accu-
racy of 93.6% when compared to empirical results.
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• Computing methodologies→Modeling methodologies;Ma-
chine learning; Parallel computing methodologies; Distributed com-
puting methodologies.
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1 INTRODUCTION
Deep learning (DL) has become increasingly popular in many major
research areas, often achieving new state-of-the-art results [6, 7].
Due to its ability to solve complex problems the number of possible
applications is constantly increasing. At the same time, the trained
models become ever larger and more complex, which leads to a
continually growing computational overhead. In the field of natu-
ral language processing (NLP), for instance, model size has been
increasing at least tenfold each year [6, 10, 29]. One example of
this trend is OpenAIs GPT NLP model. While GPT-2 had 1.5 billion
parameters [29] its successor GPT-3 features 175 billion parame-
ters [6], requiring hundreds of GPUs and several days for training.
In general, today’s state-of-the-art models [6, 10] exploit the capa-
bilities of GPUs to perform simultaneous computations in order to
distribute the training processes and significantly accelerate ma-
chine learning operations. Furthermore, they far exceed the size of
single GPU memory, making model parallelization and distributed
training indispensable. However, huge models are only one reason
for distributed training. Other causes include the acceleration of
the training process utilizing data parallelism, training on large
datasets, or very compute-intensive models.

1.1 Motivation and Challenges
To distribute the training process, application developers mostly use
a combination of deep learning frameworks such as TensorFlow and
Horovod [32]. Together they enable the distribution of the training
process among nodes, utilizing all available CPUs and GPUs while
also managing inter-node communication via MPI. Since individual
training runs for models such as GPT-3 cost millions of dollars,
developers try to make the training process as efficient as possible,
optimally utilizing accelerators such as GPUs or TPUs. In general,
the efficient distribution of a deep learning application is a diffi-
cult task. Therefore, many deep learning applications suffer from
latent scalability bottlenecks, including inefficient input pipelines,
insufficiently optimized network architectures, inappropriate model
parameters, large synchronization overheads, or inefficient training
configurations [14, 27, 37]. Hence, there are a variety of approaches,
such as CRADLE [26] or DeepDiagnosis [36] that try to debug and
localize bugs in deep learning codes.

Even though deep learning frameworks such as TensorFlow, Py-
Torch, and Horovod come with designated performance profiling
tools [2, 3, 32], they provide little to no insight into an application’s
distributed training performance and efficiency at different scales.
The same applies to Nsight Systems [23], a profiling and visualiza-
tion tool from NVIDIA based on the CUDA Profiling Tools Interface
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(CUPTI) [22]. It provides a more general performance analysis ap-
proach for all kinds of applications utilizing NVIDIA GPUs but also
does not allow any assumptions on application behavior at scale or
performance extrapolation.

Besides these profiling tools, there are a variety of more general
approaches, focusing on studying the computation requirements,
data reuse, and memory access patterns in deep learning applica-
tions [16, 18, 30]. Though, their approach is too general to extract
useful performance insights for specific application codes. Again
others use analytical modeling to predict the training performance
of an application. Qi et al., for example, proposed PALEO, an ana-
lytical performance model that models the expected scalability and
performance of a deep learning system [28]. Similarly Kahira et al.
proposed ParaDL, a tool that uses a combination of analytic model-
ing and empirical parameterization to analyze the computational,
communication, and memory requirements of convolutional neural
networks (CNNs) to understand the trade-offs between different par-
allelism approaches on performance and scalability [17]. However,
these approaches require expert knowledge and manual analysis,
which significantly limits their code coverage and the amount of
insights on application behavior they can provide [11, 13, 15, 24].

Moreover, there are a variety of empirical modeling approaches
such as Extra-P [31]. Extra-P creates performancemodels based on a
set of small-scale performance experiments, enabling an automated
performance and scalability analysis. However, these approaches
cannot analyze deep learning codes [5], or applications utilizing
GPUs [8, 9]. Again other approaches often focus on creating per-
formance models to optimize a specific application scenario, such
as CNNs [12, 19, 25], or standard processes and algorithms found
in almost all types of deep learning applications, such as stochastic
gradient descent (SGD) [34, 35].

Consequently, application developers often lack the necessary
tools, expert knowledge, or performance insights to optimize their
deep learning codes and identify cost-effective training configu-
rations. Without reliable information providing insights into an
application’s performance at different scales, it is generally unclear:
Q1. How long it takes to train a specific DNN per epoch with a
given resource allocation? Q2. How the training time per epoch
and efficiency changes depending on the training configuration,
e.g., the number of MPI ranks or used GPUs? Q3. If the application
suffers from any latent performance or scalability bottlenecks? Q4.
How much the training of a specific DNN will cost per epoch for a
given training configuration? Q5. What the most efficient training
configuration is considering a particular budget or time frame?

1.2 Contribution
In this paper, we present Extra-Deep, our novel automated empiri-
cal performance modeling framework based on Extra-P, to analyze
the training performance, scalability, efficiency, and cost of dis-
tributed deep learning applications. Figure 1 shows an overview of
the proposed framework and performance analysis process. Using
only a few small-scale performance experiments, Extra-Deep au-
tomatically models performance metrics, such as the application
runtime as a function of the applications’ execution parameters,
e.g., the number of MPI ranks, without requiring expert knowledge

or manual analysis. Extra-Deep creates models for individual appli-
cation kernels, such as CUDA kernels, and application models, e.g.,
describing the training time per epoch broken down by training
phases (computation, communication, memory operations). Besides
modeling the application runtime, our framework enables the anal-
ysis of various other performance metrics, such as the number of
visits per kernel or the number of transferred bytes for memory
operations. Furthermore, it supports today’s most commonly used
parallel strategies, including data, model, and hybrid parallelism.

Large-scale deep learning applications often require several
hours to train a single epoch. Profiling an entire training run is,
therefore, very expensive in terms of time and cost and, in most
cases, not practical. Thus, we developed an efficient sampling strat-
egy that effectively reduces the necessary profiling time of the
required small-scale performance experiments, making the mea-
surement of full training runs redundant. Consequently, Extra-Deep
enables a performance analysis even for large-scale deep learning
applications requiring several hours of training per epoch. Our
main contributions are as follows:

• We propose Extra-Deep, an automatic empirical modeling
framework to analyze the training performance, scalabil-
ity, efficiency, and cost of distributed deep learning tasks.
training configurations for specific applications.

• We propose an efficient measurement sampling strategy for
distributed DL applications, which reduces the necessary
profiling time by about 94.9% on average, making the mea-
surement of full training runs redundant.

• We show that Extra-Deep accurately predicts the training
performance (93.6% average prediction accuracy) by con-
ducting a wide range of experiments for different DNN ar-
chitectures, data sets, HPC systems, and parallel strategies.

• An application case study that outlines the performance
insights Extra-Deep can provide while also functioning as a
best practice guide for developers attempting to analyze the
performance of their deep learning code.

The remainder of this paper is organized as follows. After pro-
viding an overview of our novel modeling framework, we outline
Extra-Deep’s performance analysis process, efficient measurement
sampling strategy, and model creation in Section 2. We then provide
an in-depth explanation of how we analyze application scalability,
efficiency, and cost to identify cost-effective training configurations
in Section 3. To outline the insights Extra-Deep can provide, we
provide a case study on CIFAR-10 as a running example through-
out Section 2-3, which also functions as a best practice guide for
application developers. In Section 4, we evaluate the accuracy and
predictive power of our modeling framework on three paralleliza-
tion strategies, four DNN models, and five datasets, followed by a
discussion of the results and comparison to related work. Finally,
we provide a conclusion in Section 5.

2 THE EXTRA-DEEP FRAMEWORK
In this Section, we introduce Extra-Deep [1], our automated empir-
ical performance modeling framework specifically tailored for dis-
tributed deep learning applications. To allow a better understanding
of its functionality, we first outline the basic performance analysis
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process. We then take an in-depth look at its efficient measure-
ment sampling strategy, which tremendously reduces the required
measurement overhead compared to measuring full training runs,
and enables us to analyze the performance of long-running and
large-scale applications. Subsequently, we outline how we create
empirical performance models for distributed training at applica-
tion and kernel level, describing the applications computational,
communication, and memory footprint while supporting different
types of parallel training strategies. Finally, we provide a case study
on CIFAR-10 as a running example throughout the sections 2-3
to guide application developers in analyzing the performance be-
havior of their codes by answering the in Section 1.1 formulated
questions Q1 to Q5. This case study is followed by an extensive
evaluation of our approach in Section 4.

For this purpose we created a simple distributed deep learning
benchmark using TensorFlow and Horovod that trains a ResNet-50
on the CIFAR-10 dataset. The CIFAR-10 dataset is a subset of the 80
million tiny images dataset, containing 60 000 32x32 color images
in 10 classes, with 6 000 images per class. We trained the ResNet-50
from scratch using data parallelism, weak scaling, and a batch size
of 256 per rank. To scale the problem size accordingly, we multiply
the size of the training dataset by the number of MPI ranks and
perform some basic data augmentation. We then shard the dataset
by the number of MPI ranks and shuffle it so that each worker
gets a different but equal-sized piece of the dataset for training. To
conduct the necessary empirical performance measurements, we
used the DEEP cluster described in Table 1. Thus, each MPI rank
(worker) has its own dedicated GPU. However, this also means no
communication between GPUs via NCCL.

Extra-Deep is based upon Extra-P [31], an automated empirical
performance modeling tool for HPC applications that enables ap-
plication developers to quickly analyze the performance behavior
of their program code without requiring manual analysis or expert
knowledge. It is a powerful and widely used tool in the HPC com-
munity and, therefore, the ideal starting point for providing similar
support for distributed deep learning applications. However, a ma-
jor restriction of Extra-P is that it only enables the performance
analysis of applications that use the bulk synchronous parallel (BSP)
model. Today many deep learning applications also use the asyn-
chronous parallel (ASP) model. Furthermore, it does not support
strong scaling, modeling derived application metrics, (repetitive)
application phases, or different parallelization strategies such as
data, tensor, or pipeline parallelism. Finally, it does not support the
most commonly used DL implementation frameworks, such as Ten-
sorFlow or PyTorch, nor can it leverage performance measurements
from application kernels executed on a GPU. Consequently, Extra-P
does not meet the requirements for the performance analysis of
distributed deep learning applications.

We follow the principle of software reusability and, therefore, de-
cided to significantly extend Extra-P’s data processing, aggregation,
modeling, and analysis capabilities to fit the requirements, rather
than developing a new performance analysis tool from scratch.
First, we introduce a new logic to read and aggregate performance
measurements of kernels executed on GPUs including support for
the two major DL libraries, TensorFlow and PyTorch. Second, we
expand Extra-P’s support for other parallel programming models
to enable an analysis for data, model, and hybrid parallel training.
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(1) Application instrumentation
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Figure 1: Overview of the Extra-Deep modeling framework
including the employed performance analysis process, and
the used measurement toolchain.

Third, we define novel performance functions to model metrics,
such as the training time per epoch spent for computation, commu-
nication, and memory operations as a function of the applications’
execution parameters. Fourth, we leverage the created models to
perform further analysis, e.g., analyzing the application’s scalability,
efficiency, and cost to identify cost-efficient training configurations.

The general focus of our approach is on the performance analysis
of distributed deep learning applications running on small to large-
scale clusters. Therefore, we do not consider serial or applications
that utilize only a single node, including cases of model parallel
training that use several GPUs but only a single process. Finally,
Extra-Deep supports weak as well as strong scaling scenarios.

2.1 Extra-Deep’s Performance Analysis Process
Figure 1 outlines Extra-Deep’s basic performance analysis process,
including the toolchain we propose to collect the required empirical
performance measurements. The numbers (1-5) in the blue oblong-
shaped boxes describe the different analysis steps followed by their
outputs displayed by the gray rectangles.

(1) Application instrumentation: To analyze an application’s
performance, we first instrument all high-level code, i.e., code that
the developer has written. This enables us to not only analyze
framework-level code such as TensorFlow or CUDA API function
calls, which are automatically covered by many profiling tools such
as Nsight Systems [23] or Score-P [4] but also investigate the per-
formance of user-defined functions. We instrument an application
using Extra-Deep’s built-in automated instrumentation tool that
uses static code analysis to instrument the code using NVIDIAs
Tools Extension Library (NVTX) [21]. As almost all of todays deep
learning codes are written in Python, we only support Python files.

(2) Application profiling: Subsequently, we profile the instru-
mented application using NVIDIA’s profiling tool Nsight Systems to
conduct a series of performance experiments that are the empirical
measurement base for modeling. Using our efficient measurement
sampling strategy (see Section 2.2), measuring five training and
validation steps from two epochs of training is enough for modeling
and to capture all performance-relevant kernels of the application.
A training step is one gradient update of the neural network in
which a predefined batch (number of samples) of the training data
set is processed. A validation step evaluates the networks accuracy,
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e.g., to predict a target variables value, using a batch of the valida-
tion data set without updating the networks’ gradients. However,
one can measure more steps, epochs, or the entire application run-
time to further increase model accuracy. The first epoch acts as
a warm-up round for the training process, and its measurements
are not used for modeling. Many deep learning frameworks, such
as TensorFlow, perform initialization and optimization operations
during the first few training steps. Thus, one will encounter high
variations in the measured performance metric’s values. For our
analysis, we measure the runtime and the number of visits for each
instrumented function. This includes CUDA kernels, memset, mem-
copy, and NCCL operations on the GPU, as well as CUDA API,
cuBLAS, cuDNN, MPI, OS, and user-defined function calls on the
CPU. For the memory operations, we additionally measure the num-
ber of transferred bytes. We measure these application kernels for
eachMPI rank of an application configuration, where an application
configuration corresponds to a specific set of execution parameters,
such as the number of MPI ranks or the problem size, that are used
when running the application. Alternatively, Extra-Deep supports
measurements from other profiling tools such as Score-P, or any
CUPTI-based performance profiler.

(3) Data preprocessing: Profiling an application with our effi-
cient measurement sampling strategy enables us to create accurate
performance models using measurements from only five training
steps from two training epochs. However, this requires some prepro-
cessing and aggregation of the collected measurement data before
we can create performance models. As this step is essential for our
modeling approach to reduce the required measurement overhead
and enable the analysis of long-running and large-scale applications,
it is described in detail in Section 2.2.

(4) Performance modeling: After data preprocessing, we em-
ploy Extra-Deep to automatically create kernel and application
models for a variety of different metrics, such as the application
runtime or the number of transferred bytes. A kernel model de-
scribes the performance of an individual application kernel, e.g., for
a CUDA kernel executed on GPU during training. An application
model, on the other hand, for example, describes the application’s
training time or cost per epoch. For a detailed explanation of the
model creation process, see Section 2.3.

(5) Performance analysis: Next, we leverage the created mod-
els to perform further analysis, investigating the application’s per-
formance behavior at different scales and identify cost-effective
training configurations, which is described in detail in Section 3.

(6) Performance insights: Finally, one can exploit the perfor-
mance insights found by automated analysis to fix or improve the
application code. Subsequently, one would profile the application
again and run another performance analysis to verify if the made
changes had the desired effect.

2.2 Efficient Measurement Sampling
Large-scale deep learning applications often require several hours
to train a single epoch. Profiling an entire training run is, therefore,
very expensive in terms of time and cost and, in most cases, not prac-
tical. Thus, we developed a simple heuristic sampling strategy to
efficiently conduct the necessary measurements for a performance
analysis while minimizing their overhead and cost.
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Figure 2: Overview of Extra-Deep’s efficient sampling strat-
egy (1), data preprocessing and aggregation logic (2)-(4).

To measure large-scale deep learning applications, we take ad-
vantage of the repetitive nature of their computational phases. In
general, the distributed training of a DNN can be divided into the
following six phases: I/O, data pre-processing, the forward pass
where the input data is passed through the entire network, back-
propagation to compute the gradients, the gradient exchange, and
finally the update of the networks’ weights. With a few exceptions,
such as I/O, which can be done at once when initializing the pro-
gram, if the entire training data set fits into memory, these phases
are repeated for each training step of an epoch and as many epochs
until model convergence is reached.

Since each training step executes almost the exact same oper-
ations, it is sufficient to profile only a small number of steps to
analyze and then extrapolate the found performance behavior for
an entire epoch. For large-scale applications, the training phase
usually accounts for most application runtime. Therefore, one can
easily measure the other phases, such as the initialization or the
validation, without requiring a significant measurement overhead
by simply reducing the number of epochs and training steps to one.
To extrapolate the performance observations from a few training
steps to an entire epoch, we inject NVTX marks into the training



Extra-Deep: Automated Empirical Performance Modeling for Distributed Deep Learning SC-W 2023, November 12–17, 2023, Denver, CO, USA

step and epoch callback functions of our benchmark codes dur-
ing application instrumentation. This will produce a timestamp
indicating the start and end of each training step 𝑠 and epoch 𝑒

during profiling. This approach works for all major deep learning
frameworks, such as TensorFlow or PyTorch. When reading the
measurement data, Extra-Deep automatically identifies all function
calls executed during a training step or between two steps.∑𝑜

𝑢=1 𝑣𝑢 = v𝑛𝑘𝑟 (1)

Step (1) in Figure 2 illustrates how we utilize the NVTX marks to
identify which function calls belong to a particular training epoch
and step. To extrapolate the performance of an application kernel,
such as the EigenMetaKernel, we first sum all metric values of
all its executions during each training step 𝑠𝑛 indicated by 𝑠𝑛𝑠𝑡𝑎𝑟𝑡
and 𝑠𝑛𝑒𝑛𝑑 so that v𝑛𝑘𝑟 represents the total metric value of the
kernel for the step 𝑛, the MPI rank 𝑘 , and the repetition 𝑟 as shown
in Equation 1. The variable 𝑣 is universal and can hold the value
of different metrics, such as the runtime, the number of visits per
kernel, or the number of transferred bytes. The variable𝑢 represents
the index of the measured values, 𝑜 equals the total number of
measured kernel executions, 𝑛 is the training step index, and 𝑟 is the
index for the potential repetition of this measurement configuration.
Then we calculate the median value 𝑣𝑘𝑟 of all steps 𝑠𝑛 for each MPI
rank 𝑘 and measurement repetition 𝑟 using the individual step’s
sum v𝑛𝑘𝑟 . Subsequently, we use the median values 𝑣𝑘𝑟 from each
rank to compute the median metric value 𝑉𝑟 of all processes, as
illustrated by step (2) in Figure 2. Next, we aggregate the measured
values over the measurement repetitions as shown in step (3) of
Figure 2. Therefore, we calculate the median metric value 𝑉̃ of all
processes and repetitions by using the median metric values from
each repetition 𝑉𝑟 . Since some of the application kernels might be
executed asynchronously, i.e., they could fall in between two steps,
for example, 𝑠1𝑒𝑛𝑑 and 𝑠𝑛𝑠𝑡𝑎𝑟𝑡 , as shown in step (1) of Figure 2, we
additionally aggregate their values by performing steps (1)-(3) just
like for the other kernels that are executed during a training step.

Before creating a model, we have to ensure that this kernel is
also found in at least four other application configurations (five
in total) to fulfill the minimum modeling requirements of our ap-
proach [31], which are outlined in detail in Section 2.3. An ap-
plication configuration or measurement point is defined by the
values of the application’s execution parameters, e.g., the number
of MPI ranks 𝑥1. To obtain enough data for modeling our approach
requires performance measurements, e.g., of the runtime of the
EigenMetaKernel for at least five different measurement points
𝑥1 = {4, 8, 16, 32, 64, . . . }, as highlighted in step (4) of Figure 2. If the
kernel appears in less than five of the applications’ configurations,
no model will be created due to an insufficient amount of data. If a
kernel is only found in a single training step or MPI rank, it usually
indicates that it is irrelevant to the application’s performance.

To create application models, e.g., to model the training time
per epoch, we use a slightly different aggregation process. First,
we perform the same aggregation for each application kernel as
described in steps (1)-(3). Second, we categorize the kernels by
their type, i.e., computation, communication, or memory operation.
Third, we sum all 𝑉̃ of each kernel from the same categorywith each
other. As a result, we receive three values describing the total metric
value 𝑉̃𝑐𝑜𝑚𝑝 for the computation, 𝑉̃𝑐𝑜𝑚𝑚 for the communication,

and 𝑉̃𝑚𝑒𝑚 for the memory operations and use these values for
modeling. In this case, all kernel executions are essential for our
model. Thus, we do not perform any kernel filtering.

For our CIFAR-10 case study we first instrument the application
code by utilizing Extra-Deep’s builtin instrumentation tool. We
then profile five training steps from two epochs of training using
the efficient measurement sampling strategy. For profiling we use
Nsight Systems and measure NVTX, MPI, cuDNN, cuBLAS, and OS
function calls as well as memory operations. We then use the data
aggregation capabilities of our tool to convert the measurement
output of Nsight Systems into one Extra-Deep object per application
configuration, as shown in Figure 2.

2.3 Creating Empirical Performance Models
A performance model is simply a function that describes how the
performance of a program, expressed in terms of a metric such
as execution time, changes, as execution parameters, such as the
number of processes, change. By conducting a series of experiments
with varying execution parameters, we obtain an empirical dataset
to create performance models of an application. The performance
measurements in this set reflect the changes in application perfor-
mance as execution parameters 𝑥𝑚 change, where𝑚 is the number
of parameters, such that Extra-Deep can discover the underlying
function and automatically create a performance model. Further-
more, each of these experiments represents a specific application
configuration determined by the used execution parameters, which
we refer to as a measurement point 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑚).

To create performance models, Extra-Deep requires measure-
ments of at least five different application configurations per param-
eter 𝑥1 to be modeled, while the other parameters 𝑥𝑚 are held con-
stant [31]. Though, this is the absolute minimum requirement. As
one can almost fit any function through two measurement points,
we need at least five points to accurately differentiate between
logarithmic, linear, and polynomial complexity. The more measure-
ment points per parameter, the more accurately we can model the
found performance behavior. The closer the measurement points
are to the desired execution scale, the better the predictive power
of the created models. To obtain the required measurements for
modeling, we vary the application’s configuration parameters, e.g.,
the number of MPI ranks 𝑥1 = {4, 8, 16, 32, 64, . . . }, or the batch
size 𝑥2 = {32, 64, 128, 256, 512, . . . }. However, we do not consider
hyper-parameters, parameters that are used to control the learning
process, such as the learning rate or activation function. We model
only parameters that directly influence the performance behavior
of the training process in terms of metrics such as the runtime.

We define a measurement point 𝑃 (𝑥1, 𝑥2, . . . , 𝑥𝑚) as a unique
configuration of the applications execution parameters 𝑥𝑚 , where
𝑚 is the number parameters considered for modeling. The no-
tation x1 = {4, 8, 16, 32, 64} represents a set of possible parame-
ter values for 𝑥1, resulting in the measurement points P(x1) =

{𝑃 (4), 𝑃 (8), 𝑃 (16), 𝑃 (32), 𝑃 (64)}. A set of measurement points with
several parameters is simply noted as P(x1, x2), where x1 = {4, 8}
and x2 = {32, 64}, will lead to the measurement points: 𝑃 (4, 32),
𝑃 (4, 64), 𝑃 (8, 32), and 𝑃 (8, 64).

For our case study, we focus on modeling the effects of the
number of MPI ranks 𝑥1 on the application’s training performance.
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Therefore, we measure five different application configurations that
we will use for modeling P(x1) with the parameter values x1 =

{2, 4, 6, 10, 12} and 12 additional measurement points P+ (x+1 ), with
the parameter values x+1 = {14, 16, 18, 20, 24, 28, 32, 36, 40, 48, 56, 64},
which we will use for evaluation. In addition we repeat the mea-
surements for each of these configurations five times to investigate
the effects of system noise on model creation.

2.3.1 Creating Models for Individual Kernels. To create a perfor-
mancemodel of a single application kernel, e.g., a CUDAkernel such
as the EigenMetaKernel, we need to extrapolate the performance
behavior found in the aggregated measurement data. The extrapola-
tion is necessary as we only profile a small number of training steps
and not the entire training process. Since every epoch consists of a
particular and fixed number of training and validation steps, the
total metric value for the whole epoch of the EigenMetaKernel
𝐹𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑓𝑚 (𝑥1, . . . , 𝑥𝑚), that can be described as a function of the
applications’ configuration parameters 𝑥𝑚 , can be calculated from
the aggregated measurement data.

Therefore, we first define the following important variables: the
batch size per worker 𝐵, the number of MPI ranks 𝑥1, the number
of samples in the training data set 𝐷𝑡 , the number of samples in the
validation data set𝐷𝑣 , the number of training steps per epoch𝑛𝑡 , the
degree of data parallelism𝐺 , and the degree of model parallelism𝑀 .
These analytical values are easy to identify for each deep learning
application and have to be provided only once at the start of the
modeling process. The rest of the process is fully automated. The
variables 𝐺 and𝑀 play an essential role by controlling the degree
of data and model parallelism, enabling our approach to adapt the
extrapolation methodology to the employed parallel strategy.

𝑛𝑡 = ⌊(𝐷𝑡/(𝐺/𝑀))/𝐵⌋ (2)
𝑛𝑣 = ⌊(𝐷𝑣/(𝐺/𝑀))/𝐵⌋ (3)

𝐹𝑘𝑒𝑟𝑛𝑒𝑙 = 𝑛𝑡 · 𝑉̃𝑡𝑘𝑒𝑟𝑛𝑒𝑙 + 𝑛𝑣 · 𝑉̃𝑣𝑘𝑒𝑟𝑛𝑒𝑙 (4)

𝐹𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥1, . . . , 𝑥𝑚) = ∑ℎ
𝑘=1 𝑐𝑘 ·∏𝑚

𝑙=1 𝑥
𝑖𝑘𝑙
𝑙

· 𝑙𝑜𝑔 𝑗𝑘𝑙2 (𝑥𝑙 ) (5)

Using these definitions, the number of training steps per epoch 𝑛𝑡
can be calculated with Equation 2. Similarly, the number of vali-
dation steps 𝑛𝑣 can be calculated with Equation 3. Subsequently,
the total metric value of the EigenMetaKernel per epoch 𝐹𝑘𝑒𝑟𝑛𝑒𝑙
can be calculated using Equation 4, where 𝑉̃𝑡𝑘𝑒𝑟𝑛𝑒𝑙 and 𝑉̃𝑣𝑘𝑒𝑟𝑛𝑒𝑙 are
the median metric values of all MPI ranks of the kernel per train-
ing/validation step. This universal formula works for all perfor-
mance metrics, e.g., application runtime, the number of visits, or
the number of transferred bytes.

After calculating the derived metric value from the measured
values, the next step is to create a performance model using the
derived metric. To create a performance model, Extra-P expresses
the effect of one or several parameters 𝑥𝑚 on performance as a
sum of terms consisting of products of polynomial and logarithmic
expressions, where ℎ is the maximum number of terms allowed
per parameter. Therefore, first, a search space of possible model
hypotheses is generated by instantiating the performance model
normal form (PMNF), which is shown in Equation 5, with different
exponents (𝑖, 𝑗) chosen from a predefined set of exponents, e.g.,
𝐼 = {0, 1, 2} and 𝐽 = {0, 1}. The values of these sets can be adjusted
to define the search space for the models. On the other hand, the

parameters’ values are bound by the user and system limitations,
e.g., the maximum number of MPI ranks available on the given
system. Subsequently, the coefficients 𝑐𝑘 of the hypothesis are cal-
culated using linear regression. Finally, the best model is identified
using cross-validation, choosing the hypothesis with the smallest
symmetric mean absolute percentage error (SMAPE).

Since Extra-Deep is based upon Extra-P, we employ its core mod-
eling methodology. However, instead of modeling the measured
values directly, we create performance models using the previ-
ously described derived metric values 𝐹𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚) by inserting
them into the PMNF as shown in Equation 5. We apply this model-
ing methodology for all kernel models, including CUDA kernels,
memset, memcopy, and NCCL operations, user-defined functions
covered by the NVTX instrumentation, OS library, cuBLAS, cuDNN,
and MPI function calls.

As it is generally unclear how many epochs a deep learning
application has to be trained to reach the state of convergence, the
performance models created by Extra-Deep always describe the
application’s performance for a specific metric and time frame, e.g.,
per epoch. A key strength of our approach is that we employ all in-
formation contained in the measurements for model creation. Even
though collecting the empirical data requires some measurement
overhead, it enables us to capture all relevant aspects of an appli-
cation’s performance, such as I/O, performed memory techniques,
computation, and communication (inter/intra node), including the
parallel strategy used for training. Herefore, we do not need to de-
fine complicated analytical models for each parallel strategy. In fact,
the definition of our derived metric in combination with the PMNF,
as shown in Equation 5, is sufficient to model all of the previously
described effects on performance and support different types of
parallel strategies. For this work, we evaluated our approach for
data, tensor, and pipeline parallelism.

2.3.2 Creating Application Models. To create application models,
e.g., to model a total metric value such as the application runtime
per epoch, we apply the same methodology as for individual kernel
models. First, we calculate the number of training 𝑛𝑡 and validation
steps 𝑛𝑣 per epoch. Next, we aggregate the metric values of all ker-
nels performing some kind of computation 𝑉̃𝑐𝑜𝑚𝑝 , communication
𝑉̃𝑐𝑜𝑚𝑚 , or memory operations 𝑉̃𝑚𝑒𝑚 during training or validation.
Then, the total metric value per epoch 𝐹𝑒𝑝𝑜𝑐ℎ can be calculated
using Equation 6. Subsequently, we again create a search space
of hypotheses by instantiating the PMNF with the derived metric
value as shown in Equation 7, calculate the coefficients 𝑐𝑘 , and
identify the model with the best fit via the SMAPE metric.

𝐹𝑒𝑝𝑜𝑐ℎ=𝑛𝑡 · (𝑉̃𝑡𝑐𝑜𝑚𝑝 +𝑉̃𝑡𝑐𝑜𝑚𝑚+𝑉̃𝑡𝑚𝑒𝑚 )+𝑛𝑣 · (𝑉̃𝑣𝑐𝑜𝑚𝑝 +𝑉̃𝑣𝑐𝑜𝑚𝑚+𝑉̃𝑣𝑚𝑒𝑚 ) (6)

𝐹𝑒𝑝𝑜𝑐ℎ (𝑥𝑚) = ∑ℎ
𝑘=1 𝑐𝑘 ·∏𝑚

𝑙=1 𝑥
𝑖𝑘𝑙
𝑙

· 𝑙𝑜𝑔 𝑗𝑘𝑙2 (𝑥𝑙 ) (7)

𝐹𝑐𝑜𝑚𝑝 = 𝑛𝑡 · 𝑉̃𝑡𝑐𝑜𝑚𝑝
+ 𝑛𝑣 · 𝑉̃𝑣𝑐𝑜𝑚𝑝

(8)

𝐹𝑐𝑜𝑚𝑚 = 𝑛𝑡 · 𝑉̃𝑡𝑐𝑜𝑚𝑚
+ 𝑛𝑣 · 𝑉̃𝑣𝑐𝑜𝑚𝑚

(9)

𝐹𝑚𝑒𝑚 = 𝑛𝑡 · 𝑉̃𝑡𝑚𝑒𝑚
+ 𝑛𝑣 · 𝑉̃𝑣𝑚𝑒𝑚

(10)

Similarly, as for the application runtime per epoch, we can model
the total metric value for all computation 𝐹𝑐𝑜𝑚𝑝 , communication
𝐹𝑐𝑜𝑚𝑚 , and memory operations 𝐹𝑚𝑒𝑚 separately as shown in Equa-
tions 8-10. Hence, we simply aggregate all relevant kernels’ metric
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values executed during training 𝑉̃𝑡𝑐𝑜𝑚𝑝
and validation 𝑉̃𝑣𝑐𝑜𝑚𝑝

and
multiply them with the number of training 𝑛𝑡 , validation steps 𝑛𝑣 .

Using the described approach, we create a performancemodel for
our CIFAR-10 benchmark to model the training time per epoch as a
function of the number of MPI ranks 𝑥1. With the resulting model
𝑇𝑒𝑝𝑜𝑐ℎ (𝑥1) = 158.58 + 0.58 · 𝑥2/31 · log2 (𝑥1)2, we can easily predict
the training time per epoch for any configuration and answer the
in Section 1.1 defined question Q1. How long does it take to train the
ResNet-50 per epoch with a given resource allocation? For a resource
allocation of 40 MPI ranks, for example, a training time of 352.37
seconds per epoch is required.

3 ANALYZING APPLICATION PERFORMANCE
To gain further insights into an application’s performance behavior
at different scales, we leverage the created models to investigate the
scalability, efficiency, and cost of the entire application as well as
individual kernels. Afterwards, we outline how we use the gathered
information to identify cost-effective training configurations.

3.1 Training Scalability and Bottlenecks
To identify potential bottlenecks in the application code, we employ
the created runtime models and rank them by their growth trends
according to the Big O notation. For example, we take the runtime
models for all CUDA kernels executed on the GPU during training.
By ranking them according to their growth trends, we can identify
the functions that will become the performance bottleneck during
training of a specific application configuration. Subsequently, one
can investigate if it is possible to optimize the pinpointed kernels,
e.g., using tensor fusion or other measures.

To further analyze application scalability, we introduce an ad-
ditional performance metric, the speedup Δ, that quantifies the
change in training performance for different application configu-
rations. More specifically, it quantifies the gain or loss in training
performance in percent by analyzing the change in runtime be-
tween a chosen initial measurement point 𝑃1 and a second point 𝑃𝑘
of the set 𝑃 (x1). 𝑃1 is always the first measurement point from the
set 𝑃 (x1) created from the parameter-value series x1, where 𝑥1 is
the number of MPI ranks. 𝑃𝑘 is the point with the 𝑘th value in the
series x1 = (𝑥1,1, 𝑥1,2, . . . , 𝑥1,𝑘 ). Since 𝑃1 functions as the baseline
for the calculation, the speedup for this point is always 0%. If 𝑘 = 1
then Δ𝑃𝑘 = 0%. For the measurement points 𝑃𝑘 , the speedup can
be calculated with Equation 11 if 𝑘 > 1, where𝑇1 = 𝐹𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥1,1) is
the derived baseline runtime of a kernel, an application phase, such
as computation, or the entire application configuration 𝑃1 (𝑥1,1),
and 𝑇𝑘 = 𝐹𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥1,𝑘 ) the runtime of the configuration 𝑃𝑘 (𝑥1,𝑘 ).
By calculating the speedup for each point in the set 𝑃 (x1), we have
enough data points to create a model for the speedup of an individ-
ual kernel, such as a CUDA kernel or the training time per epoch,
as a function of the applications configuration parameters.

Δ𝑃𝑘 = (𝑇1 −𝑇𝑘 )/(𝑇1/100) (11)

Δ𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚) = ∑ℎ
𝑘=1 𝑐𝑘 ·∏𝑚

𝑙=1 𝑥
𝑖𝑘𝑙
𝑙

· 𝑙𝑜𝑔 𝑗𝑘𝑙2 (𝑥𝑙 ) (12)

Therefore, we instantiate the PMNFwith the calculated speedups
as shown in Equation 12 and create a model as previously described.
By ranking the created models by their achieved speedup, this
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Figure 3: Training time per epoch breakdown of ourmodel in
comparison with measured runs. The vertical line indicates
the separation between modeling and evaluation points.

metric allows developers to easily identify the functions that benefit
the most or least from scaling up the application.

Following this methodology, we can investigate the second ques-
tion for our case studyQ2.How does the training performance change
depending on the application configuration? Figure 3 outlines the
training time per epoch compared to the measured values and plots
the created runtime model 𝑇𝑒𝑝𝑜𝑐ℎ . It shows how the training time
per epoch changes as a function of the number of MPI ranks 𝑥1.
Since we used weak scaling for the performance experiments, we
should ideally see a constant function, indicating that our code
scales perfectly. Instead, one can observe that the training time
increases with each additional node used. Overall the accuracy of
the created model is very high, with a prediction error ranging
between 0.1% and 1.2%. The model’s predictive power is similarly
high, reaching a maximum prediction error of 28.8% for the largest
evaluation point at 64 MPI ranks. Another indication for the high
prediction accuracy is that, besides for the last three evaluation
points, all actual measured runtime values lie within the 95% confi-
dence interval of our model. As shown by the error bars in Figure 3
the run-to-run variation between measurements with the same con-
figuration is quite low, ranging between 0.6% and 13.9%, enabling
us to create this accurate model. Furthermore, one can observe that
the run-to-run variation increases the larger 𝑥1, which makes it
more difficult to predict the training time for an extrapolation point
the further it is away from the set used for modeling.

Next, we investigate Q3. Does the application suffer from any
latent performance or scalability bottlenecks? The biggest scala-
bility bottleneck of the training process is the communication
overhead required to exchange data and the DNNs gradients af-
ter each batch update. The more nodes are used for training, the
higher the overhead and the more vulnerable the training pro-
cess becomes to network/system noise and other contingencies.
We identified this bottleneck by creating performance models for
all application kernels and ranking them by their growth trends.
The model of the communication time per epoch 𝑇𝑐𝑜𝑚𝑚 (𝑥1) =

30.14 + 3.56 · 𝑥2/31 · 0.78 · log2 (𝑥1)1, which includes all MPI com-
munication such as allreduce, allgather or broadcast, outlines how
high the overhead actually is. The required communication time
per training epoch increases from 34.41 seconds for two nodes to
296.57 seconds for 64 nodes.
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𝜖 = Δ𝑎/Δ𝑡 Δ𝑡 = (𝑥1,𝑘 − 𝑥1,1)/(𝑥1,1/100) (13)
𝑜 = 𝑥1 · 𝜚 𝐶𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚) = 𝑇𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚) · 𝑜 (14)

3.2 Parallel Training Efficiency
When scaling a distributed deep learning application, one must
consider the diminishing returns of adding more resources for
training. Therefore, Extra-Deep enables developers to analyze the
parallel efficiency of their code for a specific application configura-
tion 𝑃 (𝑥𝑚). The parallel efficiency 𝜖 is defined as the ratio of the
true speedup Δ𝑎 to the theoretical speedup Δ𝑡 , where Δ𝑡 assumes
that there is no parallelization overhead. Therefore, we can calcu-
late the parallel efficiency using Equation 13. To identify the true
speedup, we employ our in Section 3.1 described speedup model
Δ𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚), to calculate Δ𝑎 for the point 𝑃 (𝑥𝑚). The theoretical
speedup can be calculated by quantifying the change of the number
of MPI ranks 𝑥1 from the initial measurement point 𝑃1 to the point
𝑃𝑘 (𝑥1), which we want to analyze. Again we assume that 𝑃1 is the
first measurement point created from the parameter-value series
x1 = (𝑥1,1, 𝑥1,2, . . . , 𝑥1,𝑘 ), and 𝑃𝑘 it the 𝑘th point. The efficiency for
the baseline application configuration 𝑃1 is always 100%. The Δ𝑡 for
a point 𝑃𝑘 (𝑥1) can then be calculated with Equation 13. When we
calculate the parallel efficiency for enough data points, we can cre-
ate a performance model that describes the applications or a kernels
efficiency as a function of its configuration parameters 𝜖𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚),
following the same process as we used for the speedup.

3.3 Cost-Effective Training Configurations
An improved training performance by utilizing either more system
resources, or accelerators such as GPUs, always comes at a certain
price. Therefore, analysis is required to decide if this increase in
training cost is worth the gain in performance on a case-by-case
basis. To analyze the trade-off between the achieved training per-
formance and its cost, we first define the training cost 𝐶 (𝑥𝑚) of an
individual kernel, an application phase, or the entire application
for a specific application configuration 𝑃 (𝑥𝑚) as the number of
used CPU core hours. We calculate the training cost as shown in
Equation 14, where 𝑇𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚) is the runtime (per epoch) of an
application kernel, e.g., the EigenMetaKernel in seconds for the
configuration 𝑃 (𝑥𝑚), and 𝑜 represents the total number of used
CPU cores by all MPI ranks 𝑥1. To obtain 𝑇𝑘𝑒𝑟𝑛𝑒𝑙 (𝑥𝑚), we simply
use the runtime model created by Extra-Deep and evaluate it for the
configuration 𝑃 (𝑥𝑚). The total number of CPU cores 𝑜 is calculated
by multiplying 𝑥1 with the number of utilized CPU cores per MPI
rank 𝜚 . If necessary, one can easily translate this universal defini-
tion into a monetary representation by multiplying𝐶 (𝑥𝑚) with the
average cost per core hour. On the systems we used for our analy-
sis, as on most of today’s HPC systems, the utilized GPUs are not
separately billed for. Hence, the cost for the used CPU core hours
includes the cost of the GPUs. If this is not the case, Extra-Deep
allows the user to specify a custom formula for the cost calculation.

Coming back to our case study, we are now able to answer
question Q4. How much does the training of the ResNet-50 cost per
epoch for a given training configuration? Following the described
procedure, we create a cost model 𝐶𝑒𝑝𝑜𝑐ℎ (𝑥1) = 0.082 · 𝑥1.621 that
describes the applications training cost per epoch. Using this model
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Figure 4: (a) Overview of the tradeoff between training time
and computational cost [20]. (b) Example of the identification
of cost-effective training configurations for strong scaling.

one can easily estimate the cost for distributed training, e.g., using
32 nodes, which would amount to 22.49 core hours.

Based on the previous definitions of the application speedup,
efficiency, and cost, we can identify the most cost-effective training
configuration for a specific goal, e.g., for a fixed computational
budget of 10 000 CPU core hours or a maximum training time of ten
hours. In a weak scaling scenario, this is rather simple. Using the
runtime and cost models created by Extra-Deep, we can identify
the in practice valid values for the applications’ configuration pa-
rameters by restricting them to an interval where the training time
and the cost are smaller or equal to the set limits (budget/runtime).
In this case, the configuration with the smallest resource allocation
will always be the one with the lowest cost and the highest parallel
efficiency. This case also applies to our case study. Hence, we can
answer question Q5. What is the most cost-effective training config-
uration considering a particular budget or time frame? Since we use
weak scaling, the most cost-effective training configuration is the
one with the smallest number of MPI ranks 𝑥1 = 2.

For a strong scaling scenario, however, this determination is
more complicated. In practice, one must distinguish between what
is technically possible and economically feasible [20]. Figure 4a
highlights the tradeoff between training time and compute cost,
where we have a fixed training budget and a target time in which
we need to finish the training process. In this case, valid training
configurations can only be found where both areas overlap with
each other. Figure 4b shows a more concrete example, where we
set a maximum training time of 40 seconds and a training budget
of 2.8 core hours. The hatched areas under the curves outline the
in practice valid training configurations, i.e., the number of nodes
meeting one or both set targets. Next, we use the created efficiency
model to identify the configuration with the highest parallel effi-
ciency in these intervals, which is the most cost-effective training
configuration for this scenario.

4 EVALUATION
To evaluate Extra-Deep, we conducted various performance experi-
ments for different training tasks, datasets, parallelization strate-
gies, DNN architectures, and evaluation systems. We analyzed the
created models in terms of their two most essential aspects: the
achieved model accuracy and their predictive power. We define
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Table 1: Overview of the systems and their hardware config-
uration that were used for the evaluation of Extra-Deep.

Name System hardware

DEEP 75 nodes, 1x Intel Xeon Cascade Lake Silver 4215 CPU (8 cores, 16
threads), 48 GB DDR4 RAM (2 400 MHz), InfiniBand EDR (100
GBit/s), 1x Nvidia V100 GPU, without NCCL support

JURECA 192 nodes, 2x AMD EPYC 7742 CPUs (128 cores), 512 GByte
DDR4 RAM, 2x InfiniBand HDR (NVIDIA Mellanox Connect-X6),
4x Nvidia A100 GPUs each, with NCCL support

model accuracy as a measure of how well a model fits the data
points used for its creation. Therefore, we calculate the model accu-
racy as the percentage error of the predicted value compared to the
measured metric value at each modeling point. We define predic-
tive power as the extrapolation accuracy for a measurement point
outside the parameter value range used for modeling. To determine
the extrapolation accuracy for an evaluation point, we compare the
model’s prediction result with the actual measured metric value
and calculate the percentage error. After outlining the evaluation
methodology, we provide an analysis of the results, followed by a
discussion of our observations.

4.1 Evaluation Methodology
Selected datasets & DNN architectures: To show that our ap-
proach supports a variety of deep learning applications such as
image, speech, or NLP tasks, we choose five standard deep learning
datasets commonly used for benchmarking: CIFAR-10, CIFAR-100,
ImageNet, IMDB, and Speech Commands. We used the following
DNN architectures for the benchmarks: a CNN with ten hidden lay-
ers (SpeechCommands), an NNLM (IMDB), a ResNet-50 (CIFAR-10,
CIFAR-100), and an EfficientNet-B0 (ImageNet).

Application benchmarks: For our analysis, we created five
synthetic benchmarks written in Python, one for each dataset. Each
of these applications performs I/O, e.g., to load the input data or
for checkpointing, performs data preprocessing, trains a DNN in
parallel, and validates the training progress at the end of each
epoch. In addition, we created three different implementations per
benchmark, one for each parallel strategy we investigated. First,
we employ pure data parallelism, currently the most frequently
used parallel strategy for distributed DNN training. Second, we
employ two forms of hybrid parallelism: a combination of data
and model parallelism: tensor parallelism, and pipeline parallelism.
Since pure model parallelism is executed in a serial fashion, we do
not consider it for this analysis. The data parallel implementation
uses TensorFlow and Horovod, while the tensor parallel code uses
Mesh-tensorflow [33], and the pipeline parallel code uses PyTorch
and Horovod. We instrument the codes using Extra-Deep’s built in
instrumentation tool and the NVTX library.

Evaluation environments:The performance experiments were
conducted on two different supercomputers: the Deep (Extreme
Scale Booster) and the JURECA (DC Module) system at Jülich Su-
percomputing Centre (JSC). Table 1 outlines their hardware con-
figurations in detail. On both systems, we were able to access a
maximum of 64 nodes at once.
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Figure 5: Comparison of the model accuracy (2-10 nodes)
and predictive power (12-64 nodes) for the training time per
epoch models for different parallel strategies on JURECA.
The bars show the MPE of all benchmarks. The error bars
show the 95% confidence intervals of the reported MPEs.

Experiment configuration: To evaluate the accuracy and pre-
dictive power of the created models, we focus on modeling their
performance as a function of the resource allocation, i.e., the num-
ber of MPI ranks 𝑥1. To facilitate a more accessible analysis and
increase the paper’s readability, we focused on the detailed evalua-
tion of one model parameter, including all of Extra-Deep’s features,
rather than discussing several model parameters. However, as hy-
perparameters such as the learning rate or activation function play
an important role in training, we conducted several test runs for
each benchmark to select an adequate set of values to ensure high
GPU utilization. In addition, we naturally adjust those values as
we scale the number of MPI ranks according to the utilized paral-
lel strategy. Finally, we run each performance experiment twice,
once using weak scaling and once using strong scaling. To conduct
the required empirical measurements for the experiments on the
Deep system, we used the parameter-value set x1 = {2, 4, 6, 8, 10}
for 𝑥1 to obtain five points P(x1) = {𝑃1, . . . , 𝑃5} for modeling. We
then measured eight additional points P+ = {𝑃+1 , . . . , 𝑃

+
8 } using

x+1 = {12, 16, 24, 32, 40, 48, 56, 64} to evaluate the predictive power
of the created models. For the experiments on the JURECA system,
we used the parameter-value sets x1 = {8, 16, 24, 32, 40} for 𝑃 (x1)
and x+1 = {12, 48, 64, 96, 128, 160, 192, 224, 256} for P+ (x+1 ).

4.2 Extra-Deep’s Accuracy and Predictive Power
In the following Section, we outline the evaluation results of Extra-
Deep regarding its predictive power and model accuracy for dif-
ferent parallel strategies, system architectures and communication
patterns, and application types and DNN architectures. We then
examine the required profiling overhead with and without our effi-
cient measurement sampling strategy. Finally, we discuss further
evaluation results. The figures present the combined results of both
our weak and strong scaling experiments.

4.2.1 Parallel strategies. First, we investigated the capability of
our approach to accurately predict the training time per epoch
for different types of parallel strategies. Therefore, we calculate
each benchmark’s percentage error at the modeling and evalua-
tion points for the training time per epoch models for all parallel
strategies. We then calculate the median percentage error (MPE)
for all benchmarks per strategy from these values. As shown by
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Figure 6: Comparison of the model accuracy (2-10 nodes)
and predictive power (12-64 nodes) for the training time per
epoch models for data parallelism. The bars show the MPE
of all benchmarks for each system.

the results in Figure 5 the model accuracy is very high for all strate-
gies with an MPE ranging between 0.4% and 1.4%. The predictive
power of the created models for the evaluation points (12 to 64
nodes) is, as expected, decreasing linearly. The further away the
extrapolation point, the greater the MPE. Furthermore, the results
show that the tensor and pipeline parallelism models are slightly
less accurate. However, this is also expected as forms of hybrid
parallelism are more challenging to predict due to their much more
complex communication and synchronization patterns. The overall
results suggest that our approach provides accurate predictions for
all parallel strategies with a maximum error of 18.4% for tensor
parallelism and 64 nodes. For this experiment, the degree of data
parallelism𝐺 was defined as𝐺 = 𝑥1 (4× the number of nodes), and
the degree of model parallelism 𝑀 was set as 𝑀 = 1 for the data
parallel benchmarks, while 𝐺 =

𝑥1
4 (no. nodes) and 𝑀 = 4 for the

benchmarks using tensor, pipeline parallelism.

4.2.2 System architecture & communication patterns. Figure 6 out-
lines the result of the second experiment, quantifying the ability
of our approach to deal with different types of system architec-
tures and communication paradigms. As for the parallel strategies
analysis, we again calculated the MPE for the training time per
epoch models for all benchmarks and systems. The experiment was
conducted on both evaluation systems using data parallelism. The
GPU accelerated nodes of Deep have only one GPU per node and
do not support NCCL communication. The GPU accelerated nodes
of JURECA have four GPUs per node and support NCCL. For both
systems, the degree of data parallelism was set to the number of
MPI ranks (𝐺 = 𝑥1) to utilize all available GPUs. The results shown
in Figure 6 demonstrate that our approach can accurately predict
the impact of intra-, inter-node, and NCCL communication on the
application’s performance behavior. As for the different parallel
strategies, the model accuracy is very high, with an MPE ranging
between 0.3% and 1.2%. The prediction error increases with each
evaluation point reaching at most 15.4% for JURECA and 64 nodes.
As expected, the models for JURECA are slightly less accurate,
which can be explained by the increased complexity of predicting
inter-node and NCCL communication between the GPUs.

4.2.3 Application types & DNN architectures. To demonstrate that
our approach works for different types of deep learning applica-
tions, as well as DNN architectures, the third experiment of the
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Figure 7: Comparison of the predictive power for the runtime
per epoch models for data parallel training per benchmark
on DEEP. The bars show the percentage error of the models
for the evaluation points.

evaluation investigates the differences in model accuracy and pre-
dictive power of the created training time per epoch models for the
different benchmarks. Figure 7 outlines its results as percentage
errors for each benchmark. As the model accuracies are very similar
to the previously shown results, with a percentage error ranging
between 0.4% and 1.4%, we have refrained from plotting them ex-
plicitly. However, there are minor but apparent differences between
the benchmarks for predictive power. Again the percentage error
is increasing steadily for all benchmarks as the number of nodes
grows. While the models for the IMDB benchmark are the most
accurate, the ones for ImageNet are the worst, with a maximum
difference in the percentage error of 4.1% for 64 nodes. The IMDB
dataset has only 50 000 samples, which is relatively small compared
to the ImageNet dataset, which has more than 1.2 million samples
requiring a much higher computational effort for training. Another
significant difference is the DNN architecture used for training.
The EfficientNet-B0 used for ImageNet is much larger and more
complex than the NNLM employed for IMDB. Therefore, the re-
sults in Figure 7 clearly show that the training process’s complexity
and overhead significantly impact our approach’s model accuracy.
However, the results, a percentage error of at most 13.9% for Ima-
geNet and 64 nodes, show that our method accurately predicts the
performance of large-scale applications.

4.2.4 Profiling overhead. To quantify the effectiveness of our effi-
cient measurement sampling strategy, we measured the profiling
overhead and the execution time for several epochs of training for
all benchmarks using data parallelism and 64 nodes on Deep. We
then calculated the median execution time and the median profil-
ing time per epoch for each benchmark. Moreover, we disregarded
application kernels not executed during training as they contribute
only a small amount to the overall application runtime. The results
of this experiment are outlined in Figure 8. Without our sampling
strategy it is necessary to profile entire training epochs resulting
in a very large measurement overhead as shown by the bars with
the line pattern in Figure 8, which would make the analysis of
large-scale deep learning applications such as GPT-3 too expensive
to be practical. Compared to the results with the applied sampling
strategy, the average measurement overhead is reduced by about
94.9%. Furthermore, the results show that the strategy is especially
effective for large and long-running benchmarks such as ImageNet
and less effective for short-running benchmarks such as IMDB. The
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Figure 8: Comparison of the standard profiling overhead
and execution time per epoch vs. our efficient measurement
sampling strategy for data parallel training.

Table 2: Further evaluation results for other types of models
and metrics. The table shows the average MPE for all bench-
marks and both evaluation systems using data parallelism.

Evaluation Points (Number of Nodes)
Model
type Metric 24 32 40 48 56 64

Model
no.

CUDA
kernels

time 1.4% 3.3% 3.0% 5.6% 10.2% 15.6% 845
visits 0.5% 1.1% 1.4% 2% 1.8% 3.1% 845

NVTX
func.

time 1.4% 3.3% 3.0% 5.6% 10.2% 15.6% 115
visits 0.5% 1.1% 1.5% 2.3% 4.5% 3.2% 115

OS func. time 2.3% 1.8% 4.5% 7.8% 10.5% 13.6% 230
cuBLAS time 4.1% 7.2% 9.1% 10.4% 14.3% 18.3% 50
cuDNN time 5.9% 8.9% 7.6% 11.3% 14.2% 18.9% 40
MPI time 3.9% 5.1% 7.2% 10.1% 15.2% 22.4% 35
Memory
ops.

time 2.5% 3.3% 2.2% 4.8% 5.5% 7.9% 25
bytes 1.4% 1.7% 2.3% 4.4% 6.5% 7.2% 25

profiling overhead of our approach amounts to an average of about
5.4% of the total execution time per epoch over all benchmarks.
This percentage does not change when profiling with or without
the efficient sampling strategy, as we effectively only reduce the
number of profiled epochs and training steps. The measurement
overhead per step/epoch, however, is still the same.

4.2.5 Further evaluation results. Table 2 describes the results of
our remaining performance experiments, outlining the enormous
number of performance models we evaluated. It shows that the
prediction accuracy of Extra-Deep is even better for models of
individual application kernels such as the instrumented NVTX
functions. The highlighted results outline the most important find-
ings of the experiments. First, we found that for all model types, the
number of visits is generally easier to predict than the runtime. For
the CUDA kernels, for example, the MPE for the number of visits is
only 3.1% compared to 15.6% for the runtime models for 64 nodes.
Furthermore, we found that the runtime of the MPI functions is
generally harder to predict, which is outlined by an MPE of 3.9%
for 24 nodes and 22.4% for 64 nodes. Finally, we found that our
predictions for the runtime and the number of transferred bytes for
the memory operations are exceptionally accurate, indicated by an
MPE of 7.9% and 7.2% for 64 nodes.

4.3 Discussion of the Evaluation Results
The outlined results, an average model accuracy of 97.6% and an
average prediction accuracy of 93.6%, emphasize that our approach

accurately predicts the performance behavior of distributed deep
learning applications, independently of application type, DNN ar-
chitecture, system hardware, and utilized parallel strategy. These
averages are calculated using the model and prediction accuracies
from all the models that we created while conducting our perfor-
mance experiments, evaluated at an evaluation point four times the
scale than the ones used for modeling.

If theMPE of the createdmodels for 64 nodes seems high for some
of the performance models, one must consider that the parameter
values used for generating the models are more than six magnitudes
smaller. The source of the prediction error is simply the effect of
trying to predict behavior at a much larger scale and the effects of
system noise, such as OS noise or concurrently running jobs, on the
performance measurements. Depending on the system architecture,
hardware, and configuration, run-to-run variations of 15% or more
are common, when measuring an application with the exact same
set of execution parameters. On the measurements conducted for
our evaluation we found an average run-to-run variation of about
12.6% on DEEP and 17.4% on JURECA. Thus, prediction errors for
64 nodes between 15-20% are a desirable outcome.

Furthermore, the presented results depict the worst-case sce-
nario, where one uses only a minimal and very cheap (starting
point) set of measurements for model creation. Consequently, this
error can be drastically reduced by measuring one or two additional
measurement points closer to the evaluation target. A limitation of
our approach is that we can not predict behavior that is not present
in the conducted performance measurements. Communication al-
gorithms and performed memory techniques might change depend-
ing on the application scale. Therefore, a clear expectation of the
model’s target scale helps to identify the correct application config-
urations for profiling. A prediction of an applications training time
per epoch for 1 024 MPI ranks 𝑥1 based on the measurement points
𝑃 (x1), where x1 = {2, 4, 6, 8, 10} is simply unrealistic. Though, a
prediction with x1 = {8, 16, 32, 64, 128} is possible. Using our effi-
cient sampling strategy, measuring additional points close to the
desired prediction scale is very cheap, which makes it impossible
to miss important application behavior.

In comparison to other modeling approaches, Extra-Deep works
independently of application type or used parallel strategy. Ap-
proaches such as PALEO [28] or ParaDL [17] provide accurate ana-
lytical models and performance predictions, however, they require
expert knowledge, manual analysis, and are limited to application
level models. Whereas Extra-Deep automatically creates perfor-
mance models for each instrumented application kernel. A detailed
side-by-side comparison of its prediction accuracy with other ana-
lytical/empirical modeling approaches is, therefore, currently not
possible, as there is no other tool that can automatically produces
models for all kernels of an application.

5 CONCLUSION
We presented Extra-Deep, our novel modeling framework, to ana-
lyze the training performance and identify cost-effective training
configurations for distributed deep learning. Using only a few small-
scale performance experiments, it automatically creates kernel and
application models for all instrumented application functions with-
out requiring expert knowledge or manual analysis. Thus, enabling
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developers to analyze application scalability, efficiency, and cost.
Our evaluation showed that it accurately predicts performance met-
rics, such as runtime, as a function of an application’s execution
parameters, e.g, the number of MPI ranks, for different parallel train-
ing strategies, reaching an average prediction accuracy of 93.6%.
Using an efficient sampling strategy that reduces the profiling time
for the required empirical measurements by, on average, about
94.9%, compared to measuring full training runs, it enables an auto-
mated performance analysis even for long-running and large-scale
applications requiring several hours of training per epoch.
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