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Abstract. The cloud community has accepted microservices as the dominant
architecture for implementing cloud native applications. To efficiently execute
microservice-based applications, application owners need to carefully scale the
required resources, considering the dynamic workload of individual microser-
vices. The complexity of resource provisioning for such applications highlights
the crucial role of autoscaling mechanisms. Kubernetes, the common orches-
tration framework for microservice-based applications, mainly proposes a hor-
izontal pod autoscaling (HPA) mechanism, which, however, lacks efficiency. To
hinder resource wastage and still achieve the requested average response time
of microservices, we propose a multi-objective autoscaling mechanism. Based
on machine learning techniques, we introduce a toolchain for hybrid autoscaling
of microservices in Kubernetes. Comparing several machine learning techniques
and also our in-house performance modeling tool, called Extra-P, we propose the
most adequate model for solving the problem. Our extensive evaluation on a real-
world benchmark application shows a significant reduction of resource consump-
tion while still meeting the average response time specified by the user, which
outperforms the results of common HPA in Kubernetes.

1 Introduction

The microservices architecture provides a highly flexible approach for design and de-
ployment of cloud native applications. In this architecture, the application is decom-
posed into a collection of loosely coupled services, which interact over light remote
interfaces, such as REST APIs.

Containerization is the major technology to deploy the microservices. In both in-
dustry and academia, we could observe a change of focus from virtual machine centric
to container centric approaches, in the cloud environments [5]. To manage the life cycle
of containers in scale, container orchestration frameworks allow the cloud and appli-
cation providers to define how to select, deploy, monitor, and dynamically control the
configuration of containers inside the cluster.

Usually the load of an application is not distributed equally among all microser-
vices. Thus, we need to scale the microservices individually to meet the service level
agreement (SLA) and quality of service (QoS). Autoscaling is the solution for effi-
ciently managing microservices, which is very complex for the application develop-
ers/owners.
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The major autoscaling trend in Kubernetes, the de facto standard for orchestration
frameworks, is threshold-based autoscaling such that the users specify a set of fixed con-
ditions for scaling actions. Currently, horizontal pod autoscaling (HPA) is the main scal-
ing approach admitted in the Kubernetes community. Vertical pod autoscaling (VPA)
is not widely accepted yet but is becoming more popular. It has been proven that the
HPA approach is usually not efficient [1]. Consequently, we need to focus on more fine
grained autoscaling approaches.

In this paper, based on machine learning modeling, we propose a hybrid autoscaler
such that the resources could be scaled horizontally, vertically or by combination of
both approaches. The goal of our autoscaling mechanism is simultaneous optimization
of response time and resource usage cost. Based on our scaling mechanism, we pro-
posed, implemented and verified a toolchain for the whole autoscaling MAPE (monitor,
analysis, planning and execution) loop [12] in Kubernetes. We compared several per-
formance models in our approach and empirically proposed the most adequate model
for this problem. In addition, we compared our approach with the built-in HPA in Ku-
bernetes and observed its competence in real-world problems.

The rest of the paper is organized as follows. In Section 2, we review the related
work and mention the difference of our approach with the state-of-the-art. We present
our proposed autoscaling mechanism and toolchain in Section 3. We discuss evaluation
of the autoscaling approach in Section 4 and finally conclude the paper in Section 5.

2 Related Work

Resource provisioning for cloud native applications could be managed at different lev-
els. Resource providers focus on efficient assignment of resources to microservices
[6], while application developers guide the orchestrator to manage resources more effi-
ciently. Our focus in this paper is resource provisioning at the developer level.

To better understand the related work compared to our approach, we use the tax-
onomy presented in [12]. This taxonomy has been proposed for autoscaling of virtual
machines (VMs) in the cloud but it would be mainly applicable for autoscaling of mi-
croservices at the application level. In this section, we first briefly explain the necessary
concepts, from the taxonomy, and then we deeply review some of the remarkable au-
toscaling approaches proposed for microservices.

Autoscaling is the process of scaling resources for a service in an automated manner.
Autoscaling of microservices allows us to allocate more resources for microservices
when they are under a hefty load and retake extra resources when the load decreases. In
general, resource scaling can be done horizontally, vertically or in a hybrid approach.
In horizontal scaling, we add or remove the number of resource instances assigned to
a service (scaling out/in). In vertical scaling, we increase or decrease the capacity of
already assigned resource instance to a service (scaling up/down).

We could categorize autoscaling approaches based on the three web application
architecture as: single tier, multi tier and service-oriented architecture (SOA). Single
tier or single service application is the minimum deployable and scalable component
size. Microservices are often referred to as single service applications. Applications
that consist of more than one service are respectively called multi tier applications. A
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[13] Hybrid Single tier Non-sticky Hybrid Machine learning Proactive

[14] Hybrid NC NC Low-level Hybrid Proactive

[7] Horizontal NC NC High-level Hybrid Proactive

[16] Horizontal Single tier Non-sticky Low-level Machine learning Proactive

[1] Hybrid Single tier Non-sticky Hybrid Application profiling Reactive

[4] Horizontal Single tier Non-sticky High-level Machine learning Proactive

[15] Horizontal Single tier Non-sticky High-level Machine learning Proactive

MOHA Hybrid
(plus selective scaling)

SOA Sticky Hybrid Machine learning Proactive

Table 1: Comparing our approach (MOHA) to the related work (NC stands for not clear
from the publication)

commonly used architecture of this type is a three-tier application comprising three
services: a frontend, a backend, and a database layer (although databases are usually
considered not dynamically scalable and therefore ignored in autoscaling). Finally, SOA
describes applications consisting of several independent services that interact through
lightweight APIs and are not necessarily connected sequentially with each other.

Session stickiness is another aspect of autoscaling mechanisms. If the intermediate
status of interaction between a client and an application is saved, the session is con-
sidered stateful or sticky. Most autoscalers limit the scaling cluster to be stateless and
to support stateful sessions usually they transform stateful servers into stateless servers
before autoscaling, for instance, by moving the session data out of the web servers and
store them either at user side or in a shared Memcached cluster [12].

Scaling indicators are the metrics observed in the monitoring phase and are the
basis for the actions of autoscalers. They can be divided into low-level and high-level
metrics. Low-level metrics are observed in physical or virtual machine layers, such as
CPU and memory utilization and cache miss rate. Metrics collected in the application
layer are referred to as high-level metrics, such as request rate and response time.

Different approaches are used for resource estimation in autoscaling. The most basic
and widely adopted approach is rule-based resource estimation. It is described by using
a set of predefined rules, made up of conditions and actions. These rules are established
mainly by empirical estimations and are hard-coded. Application profiling is another
approach that describes the process of testing the saturation of resources, by applying
synthetic or recorded workloads on application. Other methods to estimate resources
are analytical modeling, in which a mathematical model is composed based on theory
and analysis, and machine learning which dynamically models the resource usage.

The scaling timing can be either reactive or proactive. With reactive scaling, the
autoscaler will only react to a given situation and try to counteract it. In contrast to
this, with proactive approaches, an autoscaler tries to avoid certain situations, such as
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exhaustion of resources, by executing scaling actions in advance. Predictions can be
based on given data trends and patterns or external data.

In [13], the authors developed a hybrid autoscaler using model-based reinforcement
learning, to guarantee the continuity of the performance of the application while simul-
taneously minimizing resource wastage. The researchers identified the possible long
learning phase as a general problem of existing reinforcement learning approaches.

Autopilot [14] is a hybrid autoscaler developed by Google, designed for their inter-
nal cloud. They use an orchestration tool called Borg, which manages instances of a job
consisting of several tasks. The objective of Autopilot is to reduce the slack (difference
between the requested and used resources) of jobs while maintaining stability.

A predictive autoscaling approach based on a long short-term memory (LSTM)
neural network was proposed in [7] that provides horizontal scaling, using historical
time-series data. LSTM neural networks represent a particular type of recurrent neural
networks and are very suitable to predict the next sequence in a time-series data.

A horizontal scaling approach was proposed in [16], which is an ARIMA based
autoscaling approach using historical time-series data. It estimates the number of pods
based on the predicted load represented by CPU usage. The calculation of the estimated
resources is based on the Kubernetes HPA approach. Furthermore, the approach com-
bines the ARIMA method with a signal analysis method.

The autoscaler approach in [1] provides hybrid autoscaling possibilities based on
automatic application profiling. The authors evaluated the work based on a set of ran-
dom workloads which cannot be compared to the behavior of real-world applications.

The horizontal autoscaler proposed in [4] uses RNN (Bi-LSTM) model and only
predicts the number of requests. This work is evaluated using a dummy web server and
has no resource wastage analysis. Another horizontal autoscaling in [15] similarly uses
the number of requests for modeling but ignores the importance of CPU and memory
usage. This work also uses a dummy web server that mimics a dataset, for evaluation.

Respecting the taxonomy proposed in [12], we categorized the aforementioned re-
lated works and positioned our proposed approach in this taxonomy. As shown in Table
1, these autoscaling approaches present a variety in almost each autoscaling category.
They provide a mixture of purely horizontal or hybrid (combination of both horizontal
and vertical) scaling capabilities and no approach representing a purely vertical au-
toscaler. The reviewed mechanisms are mostly stateless and need some workaround to
cover stateful sessions. Finally, we noticed that none of these works use reference appli-
cations in detail. In the cases where an application was described, the application did not
represent any real-world reference application but rather a simulated or prototype sim-
ple web service. Hence the autoscaling approaches lack real-world comparison, such as
connected microservice ensembling.

Compared to the explained autoscaling mechanisms, our proposed approach will
be evaluated as service-oriented architecture (SOA) that uses sticky sessions. It uses
both high-level and low-level metrics as scaling indicators. The resource needs will be
estimated via a machine learning based performance model (see the Section 3). Since
the performance model is based on historical data, the scaling timing is classified as
proactive. We benefit from multiple criteria decision making theory with the flexibility
of tuning weights for particular purposes (e.g. scaling data- or compute-intensive ser-
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Fig. 1: Architecture of Multi-Objective Hybrid Autoscaling (MOHA)

vices). Finally, our approach provides a flexible hybrid autoscaling such that we could
also request for only horizontal or vertical scaling. As analyzed in the Section 4, it will
achieve the average response time of services, as the QoS defined by the user.

3 Multi-Objective Hybrid Autoscaling

In this section, we explain our proposed toolchain called Multi-Objective Hybrid Au-
toscaling (MOHA)3 and the relation between the components. Figure 1 depicts using
MOHA in Kubernetes. We explain the components of MOHA by placing those to three
main phases: dataset generation, model training and autoscaling approach. In particular,
we discuss the machine learning (ML) models and our proposed autoscaling approach.

3.1 Automatic generation of dataset

The Benchmark component calculates a parameter variation matrix based on given
input parameters and starts the benchmark for each parameter. The Load Generation
component applies a given load on the microservice deployed in the Kubernetes cluster
with the given resource limits corresponding to the current parameter variation. While
running the microservice, the Metric collection component collects the various
high- and low-level metrics. After the load generation phase, the Benchmark module
retrieves the collected metrics and filters and summaries these metrics into a dataset.

3.2 Model training

The accumulated dataset of performance data, consisting of the gathered metrics must
be preprocessed (by scaling samples, as described in the rest of this section) before the
Machine Learning Model component can use it. After preprocessing, the resulting

3 https://github.com/Angi2412/PodAutoscalingKubernetes
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data can be converted to be used as a training set for Machine Learning Model or
any other performance modeling tools.

We model the performance of each microservice based on the current load of the
service and the resource limits of pods deploying the microservice. The resource limits
include CPU and memory limits, and the number of pod replicas, which are the typical
input parameters while defining the pods in Kubernetes. Load of the microservice is dy-
namically represented by requests per second. The outputs (target metrics) of the model
are the average response time, CPU usage and memory usage. The average response
time models the performance, while CPU and memory usage model resource utiliza-
tion. Therefore, we could assume that the utilization also reflects the resource wastage,
such that if a given resource is not efficiently utilized, then the resource is wasted.

We chose three different ML models and compared them to explore which one is
more suitable for the performance model prediction as part of our autoscaling toolchain.
The selected ML models are linear regression (LR), support vector regression (SVR)
and multi-layer perceptron regressor neural network (MLPRegressor NN). Since regres-
sion models can have multiple inputs but only one output, we trained each model for
each of the three target variables. Each of the selected ML approaches represents a dif-
ferent complexity level of machine learning and provides advantages and disadvantages
for specific use cases, which inspired us to choose them.

The LR model generally provides fast learning and prediction time while also being
suited for large datasets. A disadvantage of the LR model is that it performs well only
for linear samples. For this approach, we implemented a least-squares and a Bayesian
variant, an extended variant of the maximum likelihood estimator, of linear regression.

The SVR model is more stable against outliers than the other models because of
its margin approach. Additionally, it provides a wide range of use cases because of the
possibility of using several kernel functions based on the dataset behavior. The advan-
tage over the LR model is handling nonlinear coherence but with much higher training
time compared to linear regression (more than quadratic to the number of samples).

The MLPRegressor NN model is a neural network that uses backpropagation for
training and the square error as the loss function. MLPRegressor NN can also handle
non-linear samples while being especially suited for large datasets with several thou-
sands of samples. Furthermore, it provides extensive customizability by offering several
activation functions and solvers. Nevertheless, backpropagation has high time complex-
ity and the training time grows with the number of hidden neurons and layers.

Each ML model owns several hyper parameters, including estimation functions,
that need to be tweaked for providing the best possible outcome. Thus, we conducted
an extensive grid search for each of the models and hyper parameters. The grid search
consists of an estimator, a parameter space, a validation scheme, and a score function.
The estimator is the ML model, the parameter space specifies a search space for a hyper
parameter, and the validation scheme is used to split a given dataset into several smaller
datasets. The number of smaller datasets is dependent on the parameter variation result-
ing from the number of parameters and size of their parameter space. Finally, the score
function is used to compare the accuracy of the estimator given a specific parameter
variation. In the grid search, each parameter variation is executed on a smaller dataset
and then compared to the performance of the others. The output of the grid search is a
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Fig. 2: The autoscaling loop

ranked table of all parameter variations. The described grid search was executed with
all three ML models to configure their hyper parameters.

Since we use ML to represent regression then we need to normalize datasets for
using distances in the loss functions. We applied the MinMaxScaler4, which scales each
sample to a value 1 ≤ α ≤ 0. The scaler is fitted onto the training dataset. The inputs
and each target use a different scaler instance. These scalers are saved from being usable
with new samples. Each time new samples are predicted, the input has to be transformed
with the fitted scaler. Furthermore, the predicted values are inversely scaled with the
saved target scalers to bring the normalized predicted values into the original ranges.

3.3 Autoscaling loop

The Autoscaler component in Figure 1 uses the predicted performance model from
the previous phase, to choose the proper parameters for improving its target metrics. It
gathers the current status of the microservice, checks if resource scaling is necessary
and uses the Kubernetes APIs to scale the microservice accordingly.

Every autoscaler follows the MAPE (monitoring, analysis, planning and execution)
loop [12]. Monitoring is the first step that fetches all the available metrics for a given
application. The second step is to analyze the fetched data regarding specific metrics
exceeding a given threshold. Considering the metrics measured in the previous step, we
need to plan how to proceed for resource provisioning. In the last step of the MAPE
loop, the plan must be executed. The MAPE loop is running in a specified time pe-
riod, which could be, for instance, the application life cycle. The MAPE loop of our
autoscaling mechanism is shown by Figure 2, which is triggered in specific intervals.

First, the Autoscaler gathers the current status of the microservice. It calls the
Prometheus5 instances which gathers high-level metrics from the service mesh Linkerd6

and low-level metrics from Kubernetes itself. Then it checks the target metrics. If all
targets are in their thresholds, this means that the targets are satisfactory then the loop
is exited, and the microservice is not scaled. However, if the threshold is exceeded by
any of the three target metrics, the autoscaling loop would proceed. We discussed our
precise setting in Section 4.

The optimal resource limits for each target are calculated based on the current target
values, parameter status and the aimed values. To calculate the number of pods, we rely
on the same calculation used in the Kubernetes HPA 7.

4 from the Scikit-learn package (https://scikit-learn.org/)
5 https://prometheus.io
6 https://linkerd.io
7 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
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Each optimal resource limit (poptimal
i ) for parameter pi of the web service, is cal-

culated based on the desired target value (tdesired
i ) and the current status (pcurrent

i and
tcurrent
i ), as follows:

poptimal
i = dpcurrent

i ·
tcurrent
i

tdesired
i

e (1)

The number of optimal parameters is calculated by number of parameters to the
power number of targets, which in our autoscaler is 27 (= 33). Based on these calculated
parameters, a parameter variation matrix is calculated similarly for generating the syn-
thetic dataset. As a difference, the parameters are not used as ranges but used as discrete
values. For calculating the parameter variation, the optimal CPU limit that is calculated
based on the memory usage as well as the optimal memory limit that is calculated based
on the CPU usage are neglected because of their missing correlation. Considering this
removal, our parameter variation matrix includes 12 (= 3×2×2) parameter variations.
This approach limits the possible decision space of parameter variation, ensuring that
only sufficient parameter variations are considered.

Then the parameter matrix is scaled by the same MinMaxScaler used to train the
machine learning models. Furthermore, for each parameter variation, all three target
metrics are predicted by the trained models. The resulting predictions are then scaled
inversely to represent their original units.

The array with the predicted targets is then handed over to TOPSIS [9], which is
a multiple criteria decision making (MCDM) method. The TOPSIS selects the most
suitable target set, considering the weights and criteria. Therefore, the criteria for the
TOPSIS are always as minimizing the average response time, maximizing the CPU and
memory usage, minimizing the CPU and memory limit, and minimizing the number
of pods. Based on what result is desired, the weights of each criterion can be adjusted.
Moreover, the output of the MCDM is a ranked list of the targets, with the rank speci-
fying how well a target set fulfils the weighted criteria. Since the ranked list of targets
is stated in their original order, it is possible to get the best-ranked target set index and
its corresponding parameter variation.

Consequently, the best chosen resource limits are used to scale the microservice
with the Kubernetes API. In contrast to the pod update method used in the synthetic
dataset generation, the updated pod is not recreated but patched. This approach ensures
that the rolling update function of Kubernetes is used. The rolling update functionality
ensures no downtime and, therefore, no loss of requests while a pod is scaled [10].
Additionally, a readiness probe is implemented in the deployment YAML file of the
scaled microservice. If a pod is added to the deployment in horizontal scaling, the traffic
is only redirected to the new pod once it is ready. The readiness is checked by making
an HTTP request to a specific rest endpoint of the microservice that responds with the
status 200 when it is reachable. In vertical scaling, a new pod with the updated resources
is created and checked if it is ready before the previous pod is deleted.

Finally, the autoscaling loop is finished and adds a new run of itself to the Python
scheduler with the set scaling time.
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(a) CPU and memory usage (b) Frequency of the average response time

Fig. 3: Target metrics

4 Evaluation

We extensively evaluated our proposed approach including the autoscaling loop and the
MOHA toolchain. We used the Scikit-learn8 and Scikit-Criteria9 packages to implement
the machine learning models and the TOPSIS functionalities, respectively. In continue,
we first present the experimental setup and then we analyze the achieved results.

4.1 Experimental Setup

We generated a dataset consisting of 3,125 samples with five variations for each param-
eter in the ranges of [300m, 500m]10 for CPU limit, [400Mi, 600Mi]11 for memory limit
and [1-5] for replicas. The dataset was split (by randomly shuffling) into the training
dataset consists of 75% and the test dataset consists of 25% of the entire dataset.

To be more clear, we depicted a summary of the target metrics of the generated
dataset in Figure 3. The boxplots in Figure 3a show that we have the possibility of both
upscaling and downscaling, as needed. The frequency histogram in Figure 3b illustrates
that the dataset includes various response times, concluding different (light to heavy)
loads, were generated.

Each machine learning approach was trained and tested on the same datasets. To
ensure comparability between the machine learning algorithms, the used training and
test datasets were scaled with the MinMaxScaler. Moreover, for each algorithm, a grid
search was performed to tune its hyperparameters.

The threshold for the average response time describes the maximum value that the
average response time should not exceed. Respecting the suggestion from [11], this
threshold was considered as 1 second. To avoid CPU throttling and out of memory

8 https://scikit-learn.org/
9 https://scikit-criteria.readthedocs.io/

10 m stands for millicore
11 Mi stands for mebibyte
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errors, we should notice that the resources must not be fully utilized. Therefore, the
thresholds for CPU and memory usage were set to a minimum of 70% and a maximum
of 90%. In contrast to the average response time, the desired CPU and memory usage
is the mean value of the minimum and maximum threshold, being 80% in this case.

4.2 The Benchmark Setup

There are several microservices-based benchmark applications, such as robot-shop12

and the SockShop13. But considering the limitation of the applications, e.g. lack of
heavy resource usage, we chose the TeaStore 14 to evaluate our approach. The TeaStore
is a microservice-based application representing an e-commerce platform, which was
intentionally developed for studying microservice behavior [8].

The TeaStore already provides a profile set for real-world user behavior, but this
does not include buyer behavior and is implemented as a closed workload model, with
no control on arrival rate of service requests. Thus, we reimplemenetd the given user be-
havior with minor differences to the original profile, which includes randomized buyer
behavior. Furthermore, the provided user behavior for the load testing tool JMeter15

was changed into an open workload behavior that generates a given number of requests
per second.

A user after visiting the landing page of the store, performs a login action with a
random username. Afterwards, the user visits a random category and product, which
the user puts in its cart. This sub loop is repeated randomly up to five times. When all
products are in the cart, it is randomly decided if the user buys them or not. Furthermore,
the user visits its profile page and finally logs out.

The synthetic dataset was created with a constant number of requests per second,
modeling a constant load on the system. The maximum number of requests per sec-
ond is varied during the dataset generation to generate more diversity in the dataset.
Therefore, this load pattern represents only a scenario for upscaling the resource limits.
The constant load pattern is suited for the synthetic dataset generation because it pro-
vides performance insight from the load on the microservice with a specific resource
specification.

We created a custom load pattern based on an adjustable number of requests per
second. This dynamic load starts with a constantly increasing load from 1 request per
second until reaching a maximum of 1000 requests per second. This increase phase has
a duration of three and half minutes. The load of the maximum number of requests
per second stays constant for three more minutes. After that, the load is decreased until
reaching 1 request per second. Similarly, this decrease happens in a duration of three and
half minutes. The profile represents a more realistic load pattern than the constant load
pattern used for the dataset generation. It provides periods of increase in requests per
second and includes periods of load decrease. Therefore, it is suited for the evaluation
runs of the autoscaler by providing up-, down-, in- and out-scaling scenarios and a
scenario in which no scaling is necessary.
12 https://github.com/instana/robot-shop
13 https://github.com/helidon-sockshop/sockshop
14 https://github.com/DescartesResearch/TeaStore
15 https://jmeter.apache.org/
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Model LR SVR MLPRegressor NN

Target Response
time

CPU
usage

Memory
usage

Response
time

CPU
usage

Memory
usage

Response
time

CPU
usage

Memory
usage

MSE 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00
RRR222 0.55 0.78 0.90 0.72 0.87 0.94 0.56 0.78 0.90

Table 2: Phase one - Accuracy comparison

Model CPU
limit [m]

Memory
limit [Mi]

Pods
(average)

Response
time [ms]

CPU
usage [%]

Memory
usage [%]

LR 537.78 439.85 2.10 796.96 69.32 78.81
SVR 437.47 460.11 1.60 1,344.74 70.46 77.41
MLPRegressor NN 583.72 501.44 3.47 1,704.66 66.29 56.65
Extra-P 643.68 578.4 5.25 1,466.55 49.12 52.63

Table 3: Phase two – Qualitative comparison

4.3 Experimental Results

In this section, we analyze the results achieved by our autoscaling toolchain, using
the three machine learning models (LR, SVR and MLPRegressor NN) and the Extra-P
model [3]. The results are then compared with the Kubernetes HPA’s results.

We divided our analysis into three phases, each of them having a different focus. In
the first phase, each machine learning approach is trained on the synthetically generated
dataset and then their speed of training, speed of prediction and prediction accuracy are
compared. In the second phase, we evaluate the results of using ML and Extra-P models
in the MOHA toolchain, considering simultaneously minimizing average response time
and resource consumption. In the third phase, the horizontal pod autoscaling of SVR
is compared to the standard Kubernetes HPA to observe how the performance of our
proposed approach outperforms an already established autoscaling approach.

Phase one Since the least squares and the Bayesian variant of the LR delivered pre-
cisely the same values, the Bayesian variant is further referred to as LR. To measure the
speed of the ML algorithms, we considered an accuracy of 17 decimal digits that were
shown by rounding to 4 digits. In our experiments, we observed that the LR algorithm
has by far the lowest training time of only 0.7 milliseconds, while the MLPRegressor
NN has a much higher training time of 0.2 seconds. Furthermore, the SVR presents
the highest training time of all algorithms with around 0.39 seconds. The LR model’s
prediction time is very short such that after our rounding it could be assumed to be
nearly zero. Similar to the training time, the MLPRegressor is the second fastest algo-
rithm with a prediction time of 1.4 milliseconds, while the SVR model has the highest
prediction time of 25 milliseconds.

The prediction accuracy was measured with the Mean Squared Error (MSE) and the
coefficient of determination (R2) metrics [2]. The MSE measures the average squared
error between the predicted and the actual value. It is always a positive value. The closer
the value is to zero, the better the estimator. The coefficient of determination provides
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a measure of the probability that the model predicts an unknown sample. The R2 score
can be between infinite negative and one. Here the best value is one, while zero would
indicate an estimator that always predicts the expected value regardless of the input.
The results of the comparison are shown in Table 2. The best metric value of a target is
highlighted.

In summary, it can be concluded that the LR algorithm is the fastest algorithm of
all, regarding the training and prediction time but it is the least accurate one. Moreover,
the MLPRegressor NN is slower than the LR but slightly more accurate. Furthermore, it
scores the same MSE values as the LR and SVR. Finally, the SVR is much slower than
the other two methods but results in a much better R2 score throughout every target.
It is, therefore, the most accurate machine learning method of the methods compared.
However, considering the importance of prediction accuracy and the fact that the scaling
decision is not made every second, the higher prediction time of the SVR could be
practically neglected.

Phase two We compare the ML and Extra-P models, embedded into the MOHA toolchain.
The comparison is divided into qualitative and quantitative comparisons.

Qualitative comparison We calculated the average of parameters and targets. The
Extra-P resource estimation equations were created using its multi-parameter model
that uses the median and the refined approach of the current version of the application.

The results of the comparison are summarized in Table 3. Here, all parameters and
target values represent the average except for the response time represented by its me-
dian. The median response time is chosen to get a more outlier free impression of the
behavior. Moreover, the TOPSIS decision maker’s weights are chosen to be balanced:
the average response time is weighted with 0.5 while all resources related weights sum
up to 0.5. The scaling time for each approach is set to 1 minute, allowing up to ten
scales per evaluation run.

We observed that the LR model achieves the lowest median response time despite
scoring the least accuracy in the prediction of the average response time. Additionally,
it scores the highest average memory usage. Furthermore, the prediction with the ML-
PRegressor NN scores the highest and, therefore, worst response time. The SVR-based
autoscaler does use the lowest average CPU limit and number of pods while also show-
ing the highest average CPU usage. It is especially noticeable that Extra-P is scoring
the worst values in each metric except for the median response time. This result can be
caused by the fact that Extra-P was not initially designed to make precise predictions
but rather to find scaling bugs in the performance behavior of a system. Finally, the
MLPRegressor NN shows in no metric, except for the median response time, the best
or worst value. It can therefore be considered average.

The scaling behavior of all models are shown in the Figure 4. For each approach, a
visualization of each parameter was conducted over the time of the evaluation run (in
minutes). As shown, SVR uses considerably less resources, considering the number and
the resource capacity of pods, while meeting the specified average response time.

Quantitative comparison Since the microservice-based applications usually run on
public cloud environments, analyzing the monetary cost of running applications on
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(a) LR (b) Extra-P

(c) MLPRegressor NN (d) SVR

Fig. 4: Scaling behavior

commercial public clouds makes perfect sense. In continue, based on the published
resource prices from the Google Cloud 16, we estimated and compared the cost of run-
ning the benchmark application using different autoscaling approaches. To estimate the
cost of resources, we assume that the Google Kubernetes server is located in Frankfurt,
Germany (Europe-west3). Moreover, the resource prices per hour and a total utilization
of 24 hours per day are assumed. Consequently, one vCPU (1000m) costs 0.0573$ per
hour, while one gigabyte of memory (≈ 953Mi) costs 0.0063421$ per hour. To calcu-
late each of the resource costs per hour, the average resource limits of the evaluation run
are converted to the corresponding units, multiplied by the corresponding prices, and
extrapolated to one hour. Finally, the resource costs are summarized and extrapolated
to 24 hours to result in the total resource costs per day in the US dollar.

The results of the cost estimation are shown in Table 4. The SVR-based approach
shows the lowest costs of CPU and memory resources and therefore, it is the approach
with the lowest total resource costs of 6.48$ per day. The Extra-P approach results in a
high total resource cost of 30.72$, as the most expensive approach among all.

16 https://cloud.google.com/kubernetes-engine/pricing
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Model CPU [$] Memory [$] Total [$]
LR 9.36 0.96 10.32
SVR 5.76 0.72 6.48
MLPRegressor NN 16.8 1.68 18.48
Extra-P 27.84 2.88 30.72

Table 4: Phase two – Quantitative comparison (cost per day)

Model Wresponse time Wresources
SVR-HPAt 0.9 0.1
SVR-HPAr 0.1 0.9
SVR-HPAb 0.5 0.5

Table 5: TOPSIS weight variations

In summary, we could conclude that the SVR-based approach provides the fewest
number of pods, highest resource usage and therefore, lowest resource cost. Moreover,
although it scores a higher median response time than the LR, its response time still
meets the requested QoS. The Extra-P based model scored worst in the described ap-
proach because of its very high resource costs and insufficient median response time.

Phase three We compared the horizontal scaling ability of the SVR-based approach
with the Kubernetes HPA. For the sake of compatibility, we implemented the Kuber-
netes HPA approach in Python. The HPA follows the same process similar to the other
approaches for gathering the current status and uses the resource estimation of the Ku-
bernetes HPA. The HPA estimates the required number of pods based on the current
number of pods and the used target metric. It then decides to take the maximum num-
ber of pods calculated from all target metrics. In the case of the novel implemented au-
toscaler approach, the calculated CPU and memory limits are neglected in the resource
estimation process to only use the horizontal scaling capabilities of the approach.

Table 6 presents the results of the comparison. We set the CPU limit to 300m and
memory limit to 400Mi. The maximum number of requests per second was set to 1000,
in 1 minute as scaling time, with the maximum number of pods limited to 10.

To study the impact of criteria’s weights on the results, several weight distributions
of the TOPSIS, following different goals, are compared (see Table 5). SVR-HPAt favors
minimizing the response time, while SVR-HPAr tends to minimize resource wastage
instead. For comparison reasons, SVR-HPAb representing the balanced weight distri-
bution from phase one is also considered.

It can be observed that the SVR-HPAr and the Kubernetes HPA use the lowest
number of pods. The response time optimized approach uses the most pods, while the
balanced approach uses only slightly more pods than the resource optimized and the
Kubernetes HPA approach. Furthermore, the resource optimized approach has the low-
est median response time.

Overall, the balanced SVR-based approach scores the lowest cost total value and
is, therefore, the most beneficial approach of the compared approaches considering the
balance of minimizing the response time violations and the total resource wastage.
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Model Pods Response
time [ms]

CPU
usage [%]

Memory
usage [%]

Total
cost [$]

SVR-HPAt 5.55 1141.75 41.36 66.03 8.75
SVR-HPAr 1.95 170 29.42 70.09 3.63
SVR-HPAb 2.15 455.2 47.35 62.01 3.11
Kubernetes HPA 1.95 214.93 34.49 68.56 3.40

Table 6: Phase three - SVR-based HPA vs. the Kubernetes HPA

We could especially distinguish that SVR-HPAr shows the best median response
time even though the intentional weight distribution was not optimized. Furthermore, it
shows less CPU usage but more memory usage than the other approaches. In contrast
to the resource optimized approach, the response time optimized approach results in
the highest median response time of all approaches. This behaviour could be explained
by the high number of pods used. It could be possible that the registry web service,
responsible for distribution of requests, creates extra overhead for distributing workload
to more pods and causes increase of median response time.

All in all, it can be concluded that the SVR-based autoscaling approach shows better
results in horizontal pod autoscaling than the Kubernetes HPA when the weight distri-
bution is chosen correctly. Furthermore, the developed approach allows the possibility
to tweak its behavior by adjusting its weight distribution to its requirements.

5 Conclusion

Uncontrolled deployment of microservices can cause resource wastage or degrade the
performance of applications. In this paper, we propose an autoscaling approach and a
toolchain, called MOHA, designed for hybrid autoscaling of microservices in Kuber-
netes that scale pods horizontally, vertically or in a hybrid way aiming simultaneously
decreasing the response time and the resource consumption. We evaluated our approach
for three machine learning approaches, namely linear regression (LR), support vector
regression (SVR) and the multi-layer perceptron regressor neural network (MLPRegres-
sor NN), and also a performance modeling tool, called Extra-P. We observed that SVR
operates better for our problem. Conducting the variant workloads for our experiments
on a benchmark application, called TeaStore, confirms the scalability of our proposed
toolchain. Moreover, we observed that the horizontal scaling capabilities of the SVR-
based approach competes very well with the default Kubernetes HPA for the cost of
resource usage while our approach provides much better response time for microser-
vices. We believe that our open source toolchain can be practically used for real-word
microservice-based applications and by far decreases the resource usage costs while
meeting the QoS for average response time.
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