
Design-Time Performance Modeling of Compositional Parallel Programs

Fabian Czappaa,∗, Alexandru Calotoiub, Thomas Höhla, Heiko Mantela, Toni Nguyena, Felix Wolfa

aDepartment of Computer Science, Technical University of Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany
bDepartment of Computer Science, Eidgenössische Technische Hochschule Zürich,Universitätstrasse 6, 8092 Zürich, Switzerland

Abstract

Performance models are powerful instruments for understanding the performance of parallel systems and uncovering their
bottlenecks. Already during system design, performance models can help ponder alternative development options. However,
creating a performance model—whether theoretically or empirically—for an entire application that does not exist yet is challenging.
In this paper, we propose to generate performance models of full programs from performance models of their components using
formal composition operators derived from parallel design patterns. As long as the design of the overall system follows such
a pattern, its performance model can be predicted with reasonable accuracy without an actual implementation. We demonstrate
our approach with design patterns of varying complexity, including pipeline, task pool, and eventually MapReduce, which is
representative of a broad class of data-analytics applications.

Keywords: Performance Modeling, Design Pattern, MPI, MapReduce

1. Introduction

The main motivation for letting software exploit parallelism
is performance, making it a first-class citizen in the develop-
ment process. However, permanent pressure to reconcile func-
tional with performance requirements poses serious challenges
already during the design phase when an actual implementation
is not yet available. To simplify the design of parallel software,
several authors proposed design patterns to guide the creation
of parallel programs [1, 2, 3]. With its origins in the field of civil
engineering, the notion of design patterns has been introduced
to document good solutions for recurring problems [4]. In the
parallel-computing community, design patterns help identify
and express parallelism on different levels, ranging from the
decomposition of an abstract computational problem down to
the selection of specific parallel-programing constructs.

If performance cannot be measured, it must be predicted.
This is why designing efficient software requires performance
models, at least as long as one lacks a running prototype that
can serve as the basis for performance measurements. For-
mally, a performance model is an equation that describes a per-
formance metric, usually the execution time, as a function of
one or more parameters such as the size of the input data or the
number of processing elements.

Deriving performance models analytically from software
blueprints, that is searching for equations that accurately reflect
the performance of the final product, is, unfortunately, both dif-
ficult and time consuming, as can be seen in the analytical per-
formance models for MapReduce, e.g., in [5] and [6], which

∗Corresponding author
Email addresses: fabian.czappa@tu-darmstadt.de (Fabian Czappa),

felix.wolf@tu-darmstadt.de (Felix Wolf)

showcase the necessity for a thorough understanding of the in-
ternal scheduling mechanisms of the implementations. This is
why it is rarely tried for entire programs but rather for selected
kernels such as functions or loops expected to consume the ma-
jority of the compute time. More than often, software devel-
opers avoid even this and, instead, restrict their analysis to the
comparison of pre-existing performance models available in the
literature when they select appropriate algorithms.

For runnable code, empirical performance modeling
presents an effective but less laborious alternative to analyt-
ical modeling. Empirical performance modeling learns per-
formance models from measurements, for example, using re-
gression. One tool that follows this approach is Extra-P [7],
which we use extensively in our work to validate our method.
While being much faster than analytical modeling, a prerequi-
site for using this technique is the ability to obtain performance
measurements, which is usually not possible during the design
phase we want to address here. Even during re-design, the abil-
ity to run the product only materializes after all changes have
been implemented, which is often too late for major revisions.

We succeed in showing that empirical performance mod-
eling supports the (re-)design of parallel software as long as
the construction of the software follows a certain path, closely
aligned with the concept of design patterns. In our approach,
we exploit the idea that many parallel design patterns can be
interpreted as composing an application of (at least initially)
serial building blocks that represent the application logic. Very
often, these building blocks are already available, for example
as components of a serial program to be parallelized. Follow-
ing the rules of the pattern, they are subsequently connected
through communication and synchronization facilities, such as
shared queues and MPI [8] intrinsics — similar to how one
creates software in a data-flow model. Assuming that perfor-

Preprint submitted to Parallel Computing August 2, 2021

mance models exist at the level of these elementary building
blocks, derived empirically through unit performance tests (i.e.,
measurements), we define for each design pattern a matching
composition operator that allows the performance model of the
pattern-based implementation to be constructed from the less
complex performance models of the pattern components. Ap-
plying this approach recursively, we can quickly model the per-
formance of an entire application without the need to run more
than any of its components in isolation. Beyond uncovering
performance bottlenecks early, our approach also helps find op-
timal execution configurations, for example, by suggesting the
replication of slower stages in a pipeline. We summarize our
contributions as follows:

• We propose a modular approach to the construction of
performance models during the design of parallel soft-
ware that reduces the conceptual complexity of the con-
struction, allowing performance models of software com-
ponents to be plugged together based on well-defined
rules in the form of formal composition operators.

• We define composition operators for the design patterns
pipeline, task pool, and MapReduce to be used in our
modular construction approach.

• We use Extra-P [7] to show that our approach is working
within a reasonable margin of error by comparing models
constructed using our operators to empirical models of
the whole program.

This work extends a previously published paper [9], ex-
panding the construction of performance models based on
building blocks and composition operators beyond simple de-
sign patterns such as pipeline and task pool to encompass also
a much more complex example, the popular MapReduce [10].
This design pattern was first introduced by Google to enable
distributed computations on multiple compute nodes. Unlike
the simple patterns we treated before, MapReduce does not act
on one item atomically. It rather accepts a list of inputs and pro-
cesses each element independently from the others (like a task
pool). The results are then shuffled and each resulting group is
processed again, with the number of groups not having to match
the number of parts the input was initially split into. Our previ-
ously used framework supported only parallel design patterns
that connected computations by simply forwarding the data.
This cannot handle MapReduce because of the possibly unre-
lated cardinalities in the different stages. As a consequence, we
had to restructure and extend our framework, in the process re-
measuring the old results. To evaluate MapReduce in a relevant
environment, we conducted experiments with multiple compute
nodes and thus introduced two different levels of parallelism.
As a realistic use case to complement our testing framework,
we made use of a Hadoop cluster [11] with 24 compute nodes.

Before presenting the details of our approach in Section 3,
we review related work in Section 2. Then, we support our
claim with performance experiments in Section 4. We give an
relational theory for the defined operators in Section 5, compar-
ing the performance of different parallelization variants of the
same program. Finally, we summarize our results in Section 6.

2. Related Work

Our approach leverages the concept of design patterns for
parallel programs [2]. Design patterns are a form of construc-
tion principle, which is less a formal specification than a kind of
decision tree that guides the software developer through various
design spaces of decreasing levels of abstraction. A well-known
design pattern language for parallelism is OPL by Keutzer and
Mattson [1], which distinguishes five pattern categories or de-
sign spaces: structural, computational, algorithm strategy, im-
plementation strategy, and parallel execution patterns. Another
way of looking at parallel design patterns is to think of them
as algorithmic building blocks that connect serial computations
according to a construction principle that makes them run in
parallel. This approach was already introduced in [12], with an
extended account given in [13].

In addition to simple design patterns such as pipeline and
task pool, in this work we also consider MapReduce [10].
Rather than merely representing a basic construction princi-
ple, MapReduce exists in the form of frameworks that allow
users to quickly design whole data-analytics applications fol-
lowing this pattern. Existing implementations include, for ex-
ample, GrPPi [14], Phoenix++ [15], and Hadoop [11]. GrPPi
and Phoenix++ only target single compute nodes with multi-
ple threads, while Hadoop has been designed for computations
spanning multiple nodes. Hadoop targets commodity clusters
and is implemented in Java. It comes with a distributed file
system, which takes care of transferring the input files to the
compute nodes where they are processed.

The performance analysis of parallel programs has been a
primary concern since the very beginning of high-performance
computing. A variety of tools, including HPCToolKit [16],
TAU [17], Scalasca [18], Score-P [19], and Vampir [20], can
be used to gather measurements that capture the behavior of
an application in a given runtime configuration, usually at the
granularity of individual code regions or call paths. Many of
them use profiling to summarize metrics across each code re-
gion or thread, keeping the storage requirements at a minimum.
Similar to profiles, we summarize performance metrics in our
analysis. However, instead of considering the runtime of partic-
ular code regions, we rather focus on data elements and the time
they require to traverse the application. Basically, we look at
applications from a coarse-grained data-flow perspective [21].
Therein, applications are viewed as directed graphs of blocks,
where a stream of data elements flows along the arcs of the
graph and the blocks implement sequential transformations on
the input data elements. The key property of such blocks is that
they are independent of the global memory state. Many par-
allel design patterns, including pipeline, task graph, data flow,
fork/join, master/worker, and MapReduce, can be re-interpreted
according to this model.

The functional correctness of parallel programs can also be
verified in a compositional manner along design patterns. In
[22], an approach is proposed for verifying parallel programs
for analyzing very large security logs by exploiting the map
reduce pattern. While the approach is similar in spirit, the veri-
fication of functional correctness is complementary to the com-

2

positional performance analysis, which we focus on in this ar-
ticle.

Parallel design patterns have been successfully used to un-
derstand Quality of Service attributes of complex software sys-
tems at design time using probabilistic analysis [23]. We wish
to apply a similar concept towards understanding performance.
To model the performance of pattern components and validate
the composition operators we propose in this paper, we build
on Extra-P [7], an empirical performance-modeling tool, which
we tailor towards modeling the traversal time of data elements
through the program.

To support the creation of performance models, tools with
varying degrees of automation have been introduced [24, 25,
26]. Many state-of-the-art tools, including Extra-P, support em-
pirical performance modeling, a method which derives perfor-
mance models from measurements [27, 28, 29]. To generate
performance models from measurements, a range of techniques
is applied [30], many of them classifiable as machine learning,
including regression, artificial neural networks, and other sta-
tistical methods such as Gaussian process regression [31]. Be-
cause the approach presented in this paper is orthogonal to the
chosen method, we rely on the regression-based modeling tool
Extra-P.

Extra-P automatically derives human-readable performance
models from performance measurements. It is based on the as-
sumption that the performance (e.g., the runtime) of most prac-
tical programs can be expressed as a function involving loga-
rithmic and polynomial expressions of a parameter x, represent-
ing, for example, the number of input elements. A search space
for potential models is either generated automatically [32] or
can be set by the user, and a combination of regression and
cross-validation is then used to find the best coefficients and se-
lect the model with the optimal fit. The resulting performance
models express the execution time, number of floating point
operations, bytes sent over the network or any other captured
metric, in a human-readable manner, as a function of the num-
ber of processes or other performance-relevant parameters such
as the problem size.

In contrast to our method, there exists extensive litera-
ture that studies analytical performance models of MapReduce.
For example, Gandomi et al. [33] use Hadoop internal job
metrics on heterogeneous Hadoop clusters. They, as well as
Glushkova et al. [34], Yang and Sun [5], and Vianna et al. [5],
also incorporate the internal scheduling capabilities and syn-
chronization mechanisms into their performance models. Their
approaches showcase the trade-off between their analytical
models and our empirical one: On the one hand, they can ac-
count for non computationally spent time, on the other hand,
their models require a profound knowledge of the used MapRe-
duce implementation. Herodotou and Babu [35] provide one
utilization of the performance models by making a cost aware
engine for different kind of MapReduce jobs.

3. Composition Operators for Performance Models

Our goal is the modular construction of performance mod-
els for parallel applications based on our understanding of par-

allel design patterns—after their re-interpretation from a data-
flow perspective. We first clarify our general assumptions re-
garding parallel design patterns and then define two specific
patterns, namely pipeline and task pool that in our interpretation
act on one compute node and the pattern MapReduce, that per-
forms computations across a network of compute nodes. Fur-
thermore, we allow sequential concatenation in our framework,
which we do not see as a parallel design pattern but which will
help us phrase relational claims in Section 5. We use these pat-
terns and our implementations to demonstrate our approach. In
the following section, we give a term language in which the pro-
grams we consider can be expressed. After that, we explain the
performance metrics we deem appropriate for our data-flow-
centric analysis. In the last step, we clarify the notion of a com-
position operator for performance models and define operators
for the three parallel design patterns we consider in this study.

3.1. Parallel design patterns

In this work we focus on three parallel design patterns,
namely pipeline, task pool, and MapReduce. In our under-
standing, a parallel design pattern is a construction principle
that helps a developer to parallelize an application by provid-
ing hints on how and where to apply concurrent computation.
Utilizing this, a developer has to simply choose an appropriate
parallel design pattern and can follow a well established way to
split a program into blocks in order to exploit parallelism.

We consider the individual blocks combined with the help
of a pattern to be sequences of operations of variable compu-
tational intensity, without side-effects. We further assume that
the implementation of a parallel design pattern has no impact
on the performance of the sequential blocks, but can and will
affect the performance of the system as a whole. As a simplify-
ing assumption, we do not consider the cases where the intro-
duced parallelism brings other bottlenecks to the surface, e.g.
when multiple blocks compete for memory bandwith, mutually
lowering their individual performance in the process. As a con-
sequence to this, the number of threads used may not exceed the
available hardware concurrency. We also assume that a sequen-
tial building block always takes roughly the same time to pro-
cess an element, e.g., we do not consider worst case scenarios
for Quicksort, and so on. Not considering hardware restraints,
in general, limits our approach. However, we have decided not
to focus on these restraints for now, as they do not matter from
the data-flow perspective.

Below, we provide definitions of the three patterns pipeline,
task pool, and MapReduce.

3.1.1. Task pool
The task pool pattern utilizes a group of worker threads to

execute multiple blocks, henceforth called tasks, in parallel, de-
creasing the overall time in comparison to serial computation of
the tasks. This way, its main feature is the separation of prob-
lem decomposition and hardware concurrency. An instance of
the pattern in our work consists of two components, a queue for
data elements representing the tasks and a thread pool of fixed
size as shown in Figure 1 (a). The task queue stores the work

3

task 1

task n

(a) Task pool pattern

stage 1 stage 2

(b) Pipeline pattern

task 1

task n

shuffle

reduce 1

reduce n

(c) MapReduce pattern

Figure 1: Parallel design patterns from a data-flow perspective.

that has to be done and the thread pool is a set of workers that
pop data elements from the queue and process them. This lim-
its the overhead for the creation and destruction of the worker
threads. We write tpooln(task) for a task pool that concur-
rently executes the block task for each data element with n
threads.

3.1.2. Pipeline
The pipeline pattern can be compared to an assembly line in

a factory that creates a product in multiple stages. Once filled,
all stages run in parallel, albeit working on different product in-
stances. A pipeline is useful if the computational tasks can be
expressed as a consumer-producer relationship [3]. For exam-
ple when processing images in real time applying a multitude
of different filters and kernels, each application can be realized
as one stage. A pipeline consists of a sequence of stages where
each stage corresponds to a computational task that can be ei-
ther a sequential block or an instance of another parallel design
pattern. Each stage consumes a data element from the prior
stage and produces a data element for the next stage. Concep-
tually, all stages run in parallel for different data elements, as
shown in Figure 1 (b). Without loss of generality, we model
a pipeline as having two stages. A pipeline with more stages
can be modeled as a composition of pipelines with only two
stages. We write pipe(stage1,stage2) for a pipeline that is
composed of the stages stage1 and stage2.

3.1.3. MapReduce
The MapReduce pattern can express a task pool or a

pipeline, but it can also express fare more complicated control
flows. It is parameterized by two functions and by a count of
workers. A concept of how we see MapReduce is shown in
Figure 1 (c). Often, MapReduce is used to process multiple
(text) files and combine the results in the reduction step, as was
proposed in MapReduce [10] or used in [22].

The input to an instance of the MapReduce pattern is a list
of elements, which is uniformly distributed across all workers.
The first of the two functions is applied in parallel to all ele-
ments of the list. For each element, the function returns a list
of key-value pairs. Across all workers, these lists are shuffled
such that for every key, all elements are grouped together. Once
this is completed, the second function is applied to the associ-
ated list of elements for every key, again in parallel. Thus, this
pattern consists of three different stages, executed in sequence,
whereas the parallelism occurs only within each stage.

In this work, we make the following assumptions regard-
ing the workers: The workers split into a number of computa-
tion nodes which we will denote as m, having a fixed number
of threads compute at each node, which we will denote as n.
We make this distinction for the reason that in the structure of
the pattern, the workers have to communicate with one another.
This communication might be far easier between threads on a
single node than between threads on different compute nodes.

We do not consider the shuffle phase parameterizable in ac-
cordance with the state of the literature and common implemen-
tations (e.g., [10], [11], [14], [15]). We interpret it as an intrin-
sic operation of the network due to its nature of being mostly
communication and hardly any computation. For reasons we
will elaborate in the evaluation, we do not consider the number
of keys per instance fixed. We rather assume it to be a func-
tion k : N → N, mapping the number of input elements to the
number of keys. In agreement with this choice, we also assume
the number of elements per key to be variable, however, uni-
form across all keys. Thus, we model elements per key as a
function d : N → N, mapping the number of input elements
to the desired value. This allows us that for a fixed instance of
MapReduce with x inputs to have varying a number of keys in
the reduction phase (k(x)) and a varying number of elements per
key (d(x)). For example, when counting occurrences of words
in text files, more text files might produce more words, while
simultaneously emitting more elements per key. In conclusion,
we write mapReduced,k

m,n(map, reduce) for the MapReduce in-
stance that (1) is built from the functions map and reduce, (2)
runs on m compute nodes, each utilizing n threads, (3) uses
k(x) keys, each associated with (4) d(x) elements, for x input
elements.

3.2. A term language for structured programs

In this section, we introduce a formally defined language
for specifying parallel programs constructed with design pat-
terns. In this language, programs are described by terms. We
build on our term language when presenting our approach to
constructing performance models in a modular fashion. In our
notation, the variables for atomic functions are grouped in the
set V and are named f . We use m, n, o as variables for natural
numbers N, by which we mean all positive integers, not includ-
ing zero. Lastly, we use d, k as variables of type N → N which
will allow us later to get a grip on the cardinality of the lists to
reduce within MapReduce and the number of keys. We specify
the term language in Backus-Naur form, in which we use T as

4

Schematic depiction
Arrival times of
the data packages

Average duration between the
arrival of two data packages

≈ 5s

≈ 10s

10s 10s 20s 20s 30s 30s . . .

0s 10s 0s 10s 0s

15s 25s 35s 45s 55s 65s . . .

10s 10s 10s 10s 10s

Task Pool

10s

10s

Pipeline 10s 5s

Figure 2: Examples of average runtimes of individual data elements. Depicted on the top is a task pool with two different workers, each performing a task that takes
10s to complete. In a continuous flow of data packages, starting at time 0s, we expect them to arrive in pairs every 10s, i.e. the average in-between time between the
arrival of two successive data packages is 5s. On the bottom a pipeline is depicted, with a task taking 10s in the first stage and a task taking 5s in the second stage,
each with one worker. When considering a continuous flow of data packages traversing the pipeline starting at time 0s, we expect the first one to be completed after
15s, and from there on a package will arrive every 10s. In the limit (increasing the number of data packages), the average in-between time between the arrival of
two successive data packages is 10s.

a non-terminal symbol, also being the start symbol. We include
shuffle here to emphasize the importance of having a shuffle
phase, but will omit it later on for readability.

T ::= f | seq(T,T) | pipe(T,T) | tpooln(T) |

mapReduced,k
m,n(T, shuffleo

m,n, T)
(1)

Intuitively, we use m to denote the number of compute nodes,
n for the number of threads per compute node, o as the number
of keys used in the shuffle phase, k as a function that maps the
number of inputs to the number of keys, and d as a function
that maps the number of inputs to the number of elements per
key. We later substitute the concrete value of k(x) for the place-
holder o. In general, however, o can be a different number, so
we do not restrict it here.

We do consider the shuffle phase in MapReduce an intrinsic
to the computation cluster and do not want to allow programs
that consist of a shuffle phase to be wrapped inside a task pool.
Following the above rules, a structured program consists of an
atomic function, sequential concatenation, or one of the above’s
patterns wrapped around a structured program. We summarize
all constructed terms in the set T .

3.3. Performance metrics
As discussed in Section 2, performance models are equa-

tions that represent a performance metric as a function of one
or more parameters. In a first step, we identify two different
performance metrics for applications that process a stream of
data elements below. We then clarify how we formalize the
notion in the later parts of this work.

• Throughput: The rate at which data elements can be
processed by a program in a given time frame.

• Latency: The total execution time a program needs to
process a single data element.

In this work, we select throughput, since we focus on ap-
plications that process large streams of data elements. How-
ever, instead of using throughput directly, we use its inverse,

that is, the average time a data element spends in the appli-
cation, both considering the computations and the waiting and
transport times between these computations until the next data
element reaches the same stage in the workflow. We call this the
average runtime of a single data element. Examples of this met-
ric for task pool and pipeline are shown in Figure 2, an example
for MapReduce is shown in Figure 3. The concrete durations of
the tasks are exemplary and should only showcase our intuition
for the latency of the respective patterns.

We write M[·] to denote the performance model for the av-
erage runtime of a single data element through the application.
More formally, we define M to be a function that maps a struc-
tured program to a performance model, i.e., M : T → (N →
R). So, for any program, it returns a function of type N → R,
stating how long the program will execute depending on the
number of input elements.

This performance metric enables both assessing the asymp-
totic complexity of the program as a whole but also predicting
the specific runtime for a fixed number of input data elements.
Note that our approach of compositional reasoning for perfor-
mance models works for latency as well—in a similar fashion.

3.4. Composition operators for performance models

Defining a performance model for parallel programs within
our pattern language amounts to defining a function M : T →
(N→ R) that models the throughput of all such programs. The
definition of such a performance model is a tedious process that
occurs stepwise.

We propose a modular construction of such performance
models. This reduces the effort substantially because one only
needs to define performance models for each primitive pro-
grams (specified by a term f ∈ V or shuffleo

m,n), and ob-
tains performance models for more complex programs (spec-
ified by terms t ∈ (T \ V)) for free. In the following, we as-
sume that M : V → (N → R) is given, and we show how
M : T → (N→ R) can be constructed from it.

Again, we cover sequential concatenation, task pool,
pipeline, and MapReduce. For each of these patterns, we pro-
vide a composition operator that allows one to assemble a per-

5

Schematic depiction
Arrival times of
the data packages

Average duration between the
arrival of two data packages

≈ 15s15s 30s 45s 60s 75s 90s . . .

15s 15s 15s 15s 15s

4s
4s
4s

6s
5s
5s
5s

Figure 3: Example of average runtimes of individual data elements in the MapReduce pattern. Depicted is a MapReduce instance that utilizes 3 workers, and each
data package is split into exactly three map and three reduce tasks. The phases themselves can be run in parallel, however, we do not assume that different phases
of jobs can overlap, thus taking a black box approach. Starting at the time 0s, we assume that a data package will arrive every 15s, having to traverse each phase
sequentially. The shuffle and the reduction phase can start once the other phases are completed, with no internal overlap.

formance model for a program from performance models of the
components. In the construction of a performance model for
any program described by a term in T , one firstly decomposes
the program recursively until one arrives at primitive programs,
and secondly applies the composition operators iteratively from
the bottom up.

For each composition operator, we describe the rationale
behind our construction. This explanation shall clarify moti-
vation and provide intuition. The explanation is not meant to
justify that these are the only possible definitions. We justified
experimentally that our choices are sensible, as we will show in
Section 4.

3.4.1. General preliminaries
We will define M : T → (N → R) in a recursive manner,

each step unpacking one layer of the constructed term. For a
final evaluation, we thus require values for the atomic cases
M[f] for f ∈ V and M[shuffleo

m,n] for m, n, o ∈ N on a given
hardware configuration.

3.4.2. Sequential concatenation
Given a sequential concatenation seq(f1, f2) and perfor-

mance models for the parts M[f1] and M[f2], we define the
composed performance model as follows:

M[seq(f1, f2)] := λx. M[f1](x) + M[f2](x) (2)

Intuitively, executing two functions sequentially takes the time
to execute the first function plus the time to execute the second
function.

3.4.3. Task pool
Given a task pool tpooln(task), a performance model for

the sequential block M[task], and a fixed number of threads
n, we define the composed performance model of the task pool
pattern as follows:

M[tpooln(task)] := λx. 1/n · M[task](x) (3)

Intuitively, a task pool with n threads can process n data ele-
ments at once. Therefore, the average runtime of a single data
element is only a nth of the average runtime of the sequential
block task. In this sense, the performance model then maps
the number of inputs x to the expected running time.

3.4.4. Pipeline
Given a pipeline pipe(stage1,stage2) and performance

models for the stages M[stage1] and M[stage2], we define
the composed performance model of the pipeline pattern as fol-
lows:

M[pipe(stage1,stage2)] :=
λx. max(M[stage1](x),M[stage2](x)),

(4)

where max(f1, f2) is defined as the function with the worse scal-
ing behavior (in terms ofO). Intuitively, the performance model
of the pipeline pattern is equal to the performance model of the
slower stage for a selected data element size since it will be-
come the bottleneck of the execution. This is why we can use
the asymptotic complexity of the stages to make this choice.

In some cases, the performance for a given parameter range
can mean that a different selection than the asymptotic choice
has to be made. This is not the case for the types of compu-
tational tasks considered in this paper, but an expansion of the
composition operator to handle such cases would be similar to
the way collective operations in MPI optimize runtime by se-
lecting algorithms based on the number of ranks involved [36].

3.4.5. MapReduce
For an instance mapReduced,k

m,n(map, reduce) and perfor-
mance models M[map], M[shuffle], and M[reduce], we de-
fine the performance model of the complete pattern as the fol-
lowing higher order function:

M[mapReduced,k
m,n(map, reduce)] := λx.

x · M[map](1)
m · n

+ M[shufflek(x)
m,n](d(x)) +

k(x) · M[reduce](d(x))
m · n

(5)

This operator, as the ones for pipeline and task pool before,
returns a function that maps the number of inputs (x) to a pre-
dicted execution time.

Following the line of thought that the three conceptual
phases (map, shuffle, reduce) of MapReduce flow sequentially,
the execution time for the complete pattern is the summed exe-
cution time of the different stages. In the map phase, the func-
tion is applied to x many elements on m · n many threads in
parallel. Afterwards, the shuffle phase takes care of distributing
d(x) elements across a network of m nodes and n threads, while
having to manage k(x) keys. Lastly, the reduction function is
applied k(x) times with m · n threads, each function call having
to deal with d(x) many elements.

6

4. Evaluation

Table 1: Models of sequential task blocks, measured in nanoseconds. For inc,
the performance model for 10 repeated increments is given to counteract noise
interference. For the number of input elements x, this gives the respective per-
formance models. 1) The minimum, 0.25 quartile, median, 0.75 quartile, and
maximum coefficient of variation. 2) The standard deviation.

Row Task Model [ns] CV. [%] / Std. [%]

1 nop 5422.97 (4.82, 22.75, 28.61, 34.4, 131.05)1)

2 inc 536.185 · x (0.43, 1.51, 2.14, 3.05, 16.67)1)

3 qsort 1034.17 · x log2 x (0.01, 0.06, 0.29, 0.48, 3.13)1)

4 mapsmallown 197598 11.762)

5 mapmediumown 1274060 3.032)

6 map
large
own 11410300 2.532)

7 reducep 38316 8.822)

8 reducev 0.353395 · x (4.8, 9.41, 22.53, 34.1, 34.66)1)

9 mapgrppi 1.241e7 6.272)

10 reducegrppi 9.449e6 6.852)

11 maphadoop 3.529e7 2.552)

12 reducehadoop 9376 · x (3.13, 3.89, 4.27, 4.78, 5.79)1)

13 transfer 0.125 · x N/A

In this section, we support the definition of the operators
from Section 3 experimentally. To create examples of parallel
systems, we first introduce a number of computational tasks
with different complexities, which we use as the sequential
building blocks for our parallel design patterns. We then create
performance models using the composition operators we have
introduced for these patterns.

We compare the compositional models (which we call mod-
ular) with the performance models generated by Extra-P for the
entire systems (which we call monolythic), and with the actual
performance measurements of the entire systems themselves.
We show that the prediction errors of the modular performance
models are moderate across all our experiments.

As an error metric, we choose the relative error, calculated
by the difference between the predicted value and the measured
value divided by the measured value. We calculate the relative
error of either the actual execution time, or of the dominating
scaling terms of the performance models we constructed. In
the later case, we do this in order to compare the actual scaling
behavior, as non-dominating terms get absorbed the larger the
inputs become. This shows that our approach is flexible enough
to support constructing a performance model and evaluating it
at a certain point, as well as to support calculation by hand.

All experiment have been carried out on the Lichten-
berg high-performance computer of TU Darmstadt, on hard-
ware of its second upgrade phase. Each compute node of
our setup includes 2 Intel XEON E5 2680 v3 processors
(12 cores, hyper-threading disabled, 2.5GHz base, 3.3GHz
boost which is requested to be disabled via Slurm), 64GB of
DDR4-RAM running under CentOS Linux 7 (kernel 3.10.0-
957.21.3.el7.x86 64). The nodes are connected via 1Gb/s Eth-
ernet. The machine is managed by the workload manager Slurm

in version 17.02.09 and we used GCC in version 9.2.0 and Open
MPI 4.0.3 with maximal optimizations for all experiments. The
models are generated by Extra-P version 3.0, which is the lat-
est publicly available version at the time of writing. To extend
our previous method to also encompass MapReduce, we had
to extend our testing environment and add some capabilities,
which changed the atomic models for nop, inc, and qsort by
adding a small amount (visible in the atomic model of nop,
which takes approximately 5 microseconds now). With the
changes, we now allow every task the be executed in any par-
allel design pattern (for example, an instance of MapReduce
could be executed inside a task pool), thus complicating the
way data is moved in and out of the parallel design patterns
through virtual functions. We pass the actual data by relying
on asynchronous communication mechanisms, adding another
slight overhead to every computation. We re-produced the old
results [9], which now show a slightly larger deviation between
model constructed with our operators and the model generated
from performance measurements of the whole program.

The measurements for all models but Hadoop were done
with the high resolution clock defined in the C++ standard.
While this method is subject to small influences, this is one
of the most accurate methods available to us. Furthermore, re-
ducing the clock’s granularity only results in rounding errors,
which we can circumvent this way. In order to compensate for
the cold start up of a program which usually results in a slow
first execution, we configured Extra-P to use the median of all
values. Lastly, for the atomic models, we timed the functions in
the same way they are called by the actual program. In the case
of GrPPi, we had to disable inlining because of the way GrPPi
internally calls functions.

4.1. Tasks

Here, we introduce the tasks we used to evaluate our com-
position operators. Because of the fundamentally different na-
ture of task pool and pipeline on the one hand and MapReduce
on the other, we chose to use a different set of tasks for evalu-
ation. In general, the order of tasks within MapReduce cannot
be reversed, disqualifying them as evaluation tasks for pipeline.

In order to quantify the variability of the measurements, we
give the standard deviation or a summary of the coefficient of
variation in Table 1. For Rows 1, 2, 3, 8, and 12, which are
models constructed from measurements at multiple input sizes,
we calculated the coefficient of variation for each such input
size. We give the minimum, median, and maximum, as well
as the 0.25 and 0.75 quartiles. The comparably high values for
nop (Row 1) and reducep (Row 8) are due to the fast execution
overall, and thus the higher vulnerability to noise. For Rows
4, 5, 6, 7, 9, 10, and 11, we give the standard deviation, as
these models were constructed for one input size. Row 13 is
analytically computed, thus neither the coefficient of variation
nor the standard deviation are applicable.

4.1.1. Tasks for task pool and pipeline
For simplicity, the tasks we use in the following experi-

ments all take an array of integers as input, and return the array

7

Table 2: Comparison between modular and monolithic models of sequential concatenation and the task pool and pipeline patterns. Execution time is measured in
nanoseconds. For the number of input elements x, this gives the respective performance models.

Configuration Monolithic model [ns] Modular model [ns] Relative error [%]

Se
qu

en
tia

l seq(qsort,nop) 1037.42 · x log2 x 1034.17 · x log2 x + 5422.97 0.31
seq(qsort,inc) 1063.25 · x log2 x 1034.17 · x log2 x + 536.185 · x 2.74
seq(inc,qsort) 1070.71 · x log2 x 1034.17 · x log2 x + 536.185 · x 3.41
seq(inc,inc) 1030.44 · x 1072.37 · x 4.07
seq(inc,nop) 540.897 · x 536.185 · x + 5422.97 0.87

Ta
sk

po
ol

tpool1(qsort) 1072.01 · x log2 x 1034.17 · x log2 x 3.53
tpool2(qsort) 553.72 · x log2 x 517.09 · x log2 x 6.62
tpool4(qsort) 291.46 · x log2 x 258.54 · x log2 x 11.29
tpool8(qsort) 151.31 · x log2 x 129.27 · x log2 x 14.56
tpool12(qsort) 108.34 · x log2 x 86.18 · x log2 x 25.71
tpool24(qsort) 70.25 · x log2 x 43.09 · x log2 x 63.03

Pi
pe

lin
e

pipe(qsort,nop) 1086.11 · x log2 x 1034.17 · x log2 x 4.78
pipe(qsort,inc) 1105.29 · x log2 x 1034.17 · x log2 x 6.43
pipe(inc,qsort) 1076.89 · x log2 x 1034.17 · x log2 x 3.97
pipe(inc,inc) 677.05 · x 536.185 · x 20.81
pipe(inc,nop) 670.32 · x 536.185 · x 20.01

Table 3: Comparison between monolithic and modular models of the MapReduce pattern implemented in GrPPi. Execution time is in nanoseconds. For the number
of input elements x, this gives the respective performance models.

Threads Monolithic model [ns] Modular model [ns] Relative error [%]

n = 1 2.177e7 · x 2.186e7 · x 0.41
n = 2 1.108e7 · x 1.093e7 · x 1.35
n = 4 5.705e6 · x 5.465e6 · x 4.21
n = 8 3.067e6 · x 2.733e6 · x 10.89

n = 12 2.066e6 · x 1.822e6 · x 11.81
n = 24 1.065e6 · x 0.911e6 · x 14.46

after applying their computational task which can potentially
alter the array. We selected the following tasks:

1. nop: Performs no operation and return the array un-
changed [Average complexity is O(1)].

2. inc: Increases the value of each element in the array by
1. [Average complexity is O(x)]. We repeat this operation
ten times to reduce the absolute noise and give the total
time of the ten runs. This ten-times increment is also used
in every configuration of parallel design patterns that we
tested.

3. qsort: Sorts the array using the quicksort algorithm.
[Average complexity is O(x log2 x)].

We look at the average complexity rather than the worst case
complexity as we are interested in the behavior across a large
number of samples in a realistic execution scenario rather than
specific outliers. To gather data, we varied the number of el-
ements of the array from 1.024 to 262.144 in increments of
1.024. To ensure the statistical soundness of our results, we re-
peated each measurement 256 times. The runtime is expressed
in nanoseconds.

The performance models of these tasks express their run-
time as a function of the number of elements x in the array. The
models are summarized in rows 1, 2, and 3 of Table 1.

4.1.2. Tasks for MapReduce
As the general task for MapReduce, we chose to count the

frequencies of pixel-channel-values in pictures. The map task
consists of taking an image and emitting a histogram of the val-
ues, i.e., a collection of key-value pairs, in which the keys are
represented by the pixel-channel-values (red/green/blue in the
range 0 - 255) and the values are their frequencies in the picture.
The reduce task takes care of adding the values appropriately.

We decided to use only one picture and replicate it as of-
ten as needed in order to enhance the comparability of different
runs. We furthermore load this image and pass only a pointer to
the memory into the functions. This allows us to bypass cache-
inference and I/O-blocking as much as possible, which is some-
thing we do not want to focus on.

As test image, we used picture number 15 from Weber et
al. [37] in the resolutions 3072×2048, 1024×681, and 341×227,
downscaled by the algorithm provided in the paper with λ =
0.5. This enables us to investigate boundaries of our approach,
which are discussed below. The atomic models for this map
task in our framework with small, medium, and large resolution
can be found in Rows 4, 5, and 6 in Table 1.

We generally assume that one has the freedom to chose the
keys freely, so we assumed the keys to be continuous in the

8

integers, which allows the results to be stored in a vector. For
us, this means the keys represent the pixel-channel-values and
take values in the range 0 - 767.

Thus, the function k : N → N, which maps the number of
inputs to the number of keys, will always be constant to 768.
The function d : N → N, which maps the number of inputs
to the number of elements per key, in our case the number of
occurrences of a certain pixel value in a picture.

This leaves us two different methods of reduction. We can
reduce the key-value collections pairwise until there is only one
left, in which case each reduction takes a constant amount of
time with respect to the number of inputs, but the number of re-
ductions increases linearly. This is the way GrPPi [14] reduces
key-value collections. Orthogonally, we can reduce on a per-
key basis. In this way, there is a constant amount of reduction
tasks with respect to the number of inputs, but each task grows
linearly. This way is used by Phoenix [15] and Hadoop [11],
although they do not reduce all values for a given key at once,
but rather in stages. We chose to investigate both.

The performance models for the reduce functions are given
in Table 1 also. reducep (Row 7) stands for the performance
model for reducing a pair of key-value collections, hence it has
a constant performance model (adds two integers a total of 768
times). reducev (Row 8) stands for the performance model for
reducing a vector of elements on a per-key basis, hence it has a
linearly scaling performance model.

To test this method for different implementations, we hence-
forth used GrPPi and Hadoop. For GrPPi, the map-task perfor-
mance model (only the largest picture was used) and the reduce-
task performance model (the task is repeated 50,000 times to
generate a test case in which the reduction function takes a sig-
nificant portion of the overall running time) are given in Ta-
ble 1, Rows 9 and 10. The corresponding models for Hadoop
are given in Rows 11 and 12 in Table 1.

Lastly, the transfer (Row 13 of Table 1) is the perfor-
mance model for sending bytes across the ethernet connection
on the Lichtenberg high-performance computer with mpi send
and mpi recv. In this model, x is the number of bytes.

All the models are generated by executing the tasks five
times and giving these timings to Extra-P. reducev was tested
with int vectors of size 128, 256, 512, 1024, 2048, 4096, and
8192, reducehadoop was tested for 1, 2, 4, 8, 12, and 24 nodes,
and transfer is calculated by 1Gb/s = 0.125 B/ns.

4.2. Composition operators

The composition operators we defined are adequate for all
possible combinations of tasks we considered. Although we
performed experiments for all combinations, we focus, for the
sake of brevity, on analyzing the most relevant four configura-
tions for pipeline and the most relevant two for the task pool.

4.2.1. Sequential concatenation
To evaluate the operator for sequential concatenation,

M[seq(f1, f2)] := M[f1] + M[f2], we chose five different
configurations, namely seq(qsort,nop), seq(qsort,inc),
seq(inc,inc), seq(inc,nop), and seq(inc,qsort). We
chose these five in accordance to the test cases of the pipeline
pattern so that we can compare them later on. The cases
seq(qsort,nop), seq(inc,inc), and seq(inc,nop) are
accurately predicted, which is partly due to the small overhead
of the implementation of sequential concatenation. In the cases
of seq(qsort,inc) and seq(inc,qsort) we encountered
the limitation of our approach when working with performance
models constructed with Extra-P. In both cases, Extra-P returns
a model with only one term, even when allowed to use multi-
ple. For the calculation of the relative error, we only used the
leading term’s coefficient. We do this in order to not use ap-
proximations that convert a linear term into a fitting term of
scaling behavior x log2 x. We also ignore the constant part in
the modular model that is introduced by the nop operation, as
we do with all constant offsets. The results are summarized in
Table 2.

4.2.2. Task pool
The evaluation of the composition operator for task pool

is straightforward. We initialized the task pools with a differ-
ent number of threads, ranging from 1 to 24, and measured
the execution time for each run. Our composition operator,
M[tpooln(task)] = 1/n · M[task], predicts that the perfor-
mance model is the division of the task performance model by
the number of threads. The results show that each run yields
a different execution time and as such a different performance
model, as can be seen in Table 2. And indeed, the speedup
achieved by the number of threads according to the model is
effectively the division of the base model by the number of
threads used.

Table 4: Performance neutrality of pipeline associativity and commutativity. Execution time is measured in nanoseconds. For the number of input elements x, this
gives the respective performance models.

Configuration Monolithic model [ns]

A
ss

oc
ia

tiv
ity

pipe(pipe(qsort,inc),nop)

C
om

m
utativity

1057.54 · x log2 x
pipe(qsort,pipe(inc,nop)) 1092.77 · x log2 x
pipe(pipe(qsort,nop),inc) 1068.45 · x log2 x
pipe(qsort,pipe(nop,inc)) 1098.45 · x log2 x
pipe(pipe(inc,qsort),nop) 1060.94 · x log2 x
pipe(inc,pipe(qsort,nop)) 1078.37 · x log2 x
pipe(pipe(inc,nop),qsort) 1068.17 · x log2 x
pipe(inc,pipe(nop,qsort)) 1129.66 · x log2 x

9

4.2.3. Pipeline
For the evaluation of the composition operator for

pipeline, we picked five different configurations. The
composition operator, M[pipe(stage1,stage2)] =

max(M[stage1],M[stage2]), predicts that the perfor-
mance model of the pipeline is the performance model of the
slower stage. The models summarized in Table 2 show that
the measured data support using maximum as a composition
operator: the runtime and models of the pipeline where two
inc tasks are performed are effectively the same as those of the
pipeline where one inc task and one nop task is performed.
Similarly, the models and measurements for the pipeline
composed of a qsort task and a nop task and that of the qsort
task and an inc task are the same. Therefore, the average
runtime of a data element in a parallel pipeline depends only
on the runtime of the stage with the highest complexity.

4.2.4. MapReduce, Hadoop and GrPPi
For the evaluation of MapReduce’s composition operator,

we used the following application: The input consists of bitmap
pictures and the output are histograms of these pictures. The
map task counts the different RGB values and their intensity
from a picture. The reduce task adds all numbers for a given
RGB and intensity value together.

When using MapReduce as implemented
by GrPPi [14], the performance model for
M[mapReduced,k

m,n(mapgrppi, reducegrppi)] can be simpli-
fied by using the following considerations:

• GrPPi is designed to run on a single node, so m = 1 , so
no shuffling is necessary.

• GrPPi reduces the key-value-collections pairwise, start-
ing with a neutral element. This means that the number
of elements per key is fixed (d(x) = 768) and the number
of reduce tasks is k(x) = x.

Considering these simplifications,

M[mapReduced,k
m,n(mapgrppi, reducegrppi)](x)

=
x · M[map](1) + k(x) · M[reduce](d(x))

n

=
x · (M[map](1) + M[reduce](768))

n
=

x · 2.186e7
n

(6)

This performance model is evaluated for the thread counts
T = 1, 2, 4, 8, 12, 24 and the results are shown in Table 3. The
relative error increases with increasing thread count which does
not surprise. GrPPi uses multithreading opportunities inter-
nally, which play a bigger role the more threads are partici-
pating. Overall, the relative error is below 17%, which shows
that our composition operator does faithfully reflect the running
time of the single node use case of GrPPi.

In the case of Hadoop [11], we do not have low-level control
like with GrPPi and our own implementations. One example are
data types that are sent to/ received from compute nodes, which
are not Java’s value types but rather custom classes. From a
developer’s point of view, one does not know how large these

classes are and how their internal workings are in detail, so in
the later calculations we assumed the custom classes to be as
large as their value type counter parts. The map task does the
same as before in principle: It receives a byte array and con-
structs a pixel-value histogram based on the array. This is done
24000 times per map task to simulate a larger input, helping to
reduce the noise the distributed file system inherent to Hadoop
introduces. Each map task reduces its histograms locally and
has a single histogram left. The reduce task is on a per-key
basis and adds all occurrence counters.

One histogram is of type OutputCollector<LongWritable,
LongWritable>, having 768 (= 3 · 256) entries. As noted above,
we take the stance of a common developer and assume the col-
lection has a size of 768 · (8 + 8) = 12288 bytes. The consid-
eration in the previous paragraph lead to k(x) = 768 keys for
Hadoop and d(x) = x entries per key. To Hadoop, it does not
make a difference whether the worker threads are on the same
or a different compute node, so, assuming that the keys are dis-
tributed equally, the cluster has to transfer (m · n − 1)/(m · n) of
all data in the shuffle phase. This formula does ignore optimiza-
tion of communication, it only calculates the bare minimum of
bytes that have to be sent. This amount is a lower bound on the
number of bytes that have to be transferred without compres-
sion. Indeed, if a library were to compress the bytes that have
to be sent, we would not catch that. However, as we assume
no particular value-distribution, we cannot make other assump-
tion on the rate a library might compress the data by. Thus, for
Hadoop, we can conclude:

M[shufflek(x)
m,n](d(x))

= M[shuffle768
m,n](x) =

m · n − 1
m · n

· 12288 · x
(7)

Figure 4 shows the relative error of the measured execution time
and the execution time predicted by our composition operator.

We tested Hadoop with 1, 2, 4, 8, 12, and 24 compute nodes,
each with 1, 2, 4, 8, 12, and 24 threads. For each of these con-
figurations, we had a separate node take care of the synchro-
nization and distribution of work, similar to a general use case.
Here, in order to keep the amount of overhead low, we tested
with the number of input images equal to the number of com-
pute nodes, making sure one picture is processed by one com-
pute node. On each node, the program replicates the picture
once per thread, and each thread processes the picture 24000
times, so we can deal with weak scaling in a pure form.

Our method is able to predict the running time of the differ-
ent job configurations with an relative error in all but one case
below 20%. In general, the prediction is worse the more threads
on a node are computing simultaneously, however, the num-
ber of nodes does not influence the prediction’s quality. We at-
tribute this error to factors we did not include in our model, e.g.,
hardware contention in the form of a limited memory band-
width, other threads interrupting the computing ones, and time
for creation and deletion of the threads themselves.

Overall, this shows that our composition operator is also
suitable to estimate the performance of a multi node cluster
set up with Hadoop, as long as the computational tasks are far

10

Figure 4: This figure showcases the relative error between the measured execution time and the one predicted by our composition operator.

1 Node 2 Nodes 4 Nodes 8 Nodes 12 Nodes 24 Nodes
0

5

10

15

20

R
el
a
ti
ve

er
ro
r
[%

]

1 Thread per Node
2 Threads per Node
4 Threads per Node
8 Threads per Node
12 Threads per Node
24 Threads per Node

more time consuming than the noise, for example, introduced
by loading relatively much data from the disk.

4.2.5. MapReduce, own framework
To get a better understanding of the dependencies between

the emitted keys and values in the map phase and the other
phases, we expanded the testing framework we used to eval-
uate task pool and pipeline with by three different implementa-
tions for MapReduce. They mirror the way GrPPi and Hadoop
realize the pattern, but we refrained from implementing com-
munication and overhead that is not necessary for the actual
computation. We used the following ways to reduce the results
of the map phase:

• Reducing the key-value collections on each compute
node until there is just one left. Sending those ones left
to a single node, which reduces the remaining key-value
collections to a single one and outputs the result. This
leaves 768 · (8 + 8) · (m − 1)/m bytes to send for m com-
pute nodes.

• Reducing the key-value collections on a per-key-basis on
each node until one key-value collection is left. Sending
those ones left to a single node, which reduces them again
on a per-key-basis to a single collection and outputs the
result. This, too, leaves 768 · (8 + 8) · (m − 1)/m bytes to
send for m compute nodes.

• Each compute node is assigned a subset of the keys. All
compute nodes send all values associated with a key to
the respective node, which then reduces all values on a
per-key-basis. The results are then send to one node,
which outputs the result. This leaves 768 · 8 · (m − 1)/m
bytes to send for the keys in the reduce phase, together
with i/m · (m − 1)/m · 8 bytes for the values in the reduce
phase, and 768 · (8 + 8) · (m − 1)/m bytes to send in the
end for m compute nodes and i inputs.

We did this for 1, 2, 4, 8, 12, and 24 threads per compute
node, for 1, 2, and 4 compute nodes and for the small, medium,
and large pictures, giving a total of 162 performance models.

To give an overview of the models we summarize them in
Table 5. Each configuration has four degrees of freedom, the
number of nodes, the number of threads, the reduction method,
and the size of the pictures. In Table 5, we fixed each degree

once and aggregated all models with the respective feature. We
give the minimum, maximum, median, mean, and standard de-
viation of the relative errors for each such column.

The best results throughout the complete evaluation were
achieved with the large input pictures, indicating the compar-
atively high impact of noise for the small tasks. Furthermore,
with growing number of threads and compute nodes, the rela-
tive error grows. This artifact arises due to our choice of com-
position operator. We have chosen to disregard modeling inter-
thread synchronization, for example required for using thread-
safe data structures, which shows better the more threads or
compute nodes are involved.

Table 5: The relative error of the modular models for our own implementation
in percent, grouped by the size of the input pictures, the type of reduction phase,
the number of threads per compute node n, and the number of compute nodes
m.

Group Min Max Median Mean Std.

all 0.08 93.68 31.01 37.24 21.24

small 27.05 93.68 57.68 59.68 16.85
medium 6.21 62.75 31.23 32.34 12.88

large 0.08 35.88 24.41 20.03 9.06

reducep 0.15 72.62 28.26 32.02 16.92
reducev local 0.48 91.52 31.44 38.93 22.37
reducev global 0.08 93.68 34.93 40.75 22.89

n = 1 0.08 48.69 27.54 25.47 13.96
n = 2 2.11 57.87 28.60 29.35 15.31
n = 4 5.09 68.02 31.01 35.58 18.36
n = 8 10.99 77.54 32.38 40.53 19.89
n = 12 12.95 76.81 33.55 40.42 20.36
n = 24 14.64 93.68 44.67 51.98 26.28

m = 1 0.08 88.57 19.89 28.22 23.62
m = 2 23.48 91.91 33.02 41.59 18.31
m = 4 23.22 93.68 36.16 42.09 18.26

Overall, the evaluation shows that the usage of our compo-
sition operators yield faithful performance models, when con-
sidering use cases that do not push the boundaries of the work to
noise ratio too much. Altogether, Extra-P reported 31 out of the
162 performance models to be non-linear. These models were
O(x0.5 · log(x)) (2 times), O(x0.66667 · log(x)) (3 times), O(x0.75)
(1 time), O(x0.5 · log(x)) (7 times) and O(x1 · log(x)) (18 times).

11

We judged them close enough to the linear models and forced
Extra-P to generate a linear model, as these non-linear ones are
likely due to statistical uncertainty.

5. Relational theory for composition operators

In this section, we want to explore some consequences of
the operators from Section 3, multiple patterns interact. Gener-
ally, composition operators provide a structured way of combin-
ing multiple performance models. They enable compositional
reasoning in form of an relational theory on the higher order
function for the performance models.

These kinds of statements relating multiple parallel design
patterns to one another are not possible if the performance of
the whole program is modeled as a black box, yet they are ev-
ident using our compositional modeling. However, statements
like these are not possible unless the affected parts of a pro-
gram can be completely disassembled. MapReduce as a paral-
lel design pattern does not support this kind of disassembly be-
cause the map and reduce phase rely crucially on one another.
This surfaces in the model of shuffle, which’s model relies on
the number of participating threads and processes. Thus, disas-
sembling the map phase into an additional task pool hides this
kind of information by our black box approach. The map phase
directly influences the reduce phase by the number of keys it
generates, so they cannot be pulled apart. Furthermore, in im-
plementations such as Hadoop or GrPPi, it is assumed that the
map and reduce functions are serial and that all parallelization
is achieved by replicating the map and reduce phases.

5.1. Relational claims for composition operators

In the following, we provide examples of rules that govern
our composition operators and the benefits they provide. For all
stages stage1, stage2, and stage3, sequential blocks task1
and task2, thread counts n, the following relations hold:

(i) M[pipe(stage1,pipe(stage2,stage3))]
= M[pipe(pipe(stage1,stage2),stage3)],

(ii) M[pipe(stage1,stage2)]
= M[pipe(stage2,stage1)],

(iii) M[pipe(tpooln(task1),tpooln(task2))]
= M[tpooln(pipe(task1,task2))], and

(iv) M[pipe(task1,task2)]
≥ M[tpool2(seq(task1,task2))].

Intuitively, Equation (i) states that the performance of a
pipeline with more than two stages does not depend on the com-
position order and Equation (ii) states that the performance of
a pipeline does not depend on the order of the stages. Equa-
tion (iii) states that a parallel pipeline where each stage is a task
pool executing some work has the same performance as a task
pool where the tasks are parallel pipelines executing the same
work. This is equivalent to stating that when layering parallel
design patterns correctly, the performance of the resulting sys-
tem will not change, regardless of the ordering of these patterns.

On a practical level, this means that once the models of the
individual stages are known, the model for the performance of
the entire system can be derived, and no new measurements
have to be performed if the ordering is changed. As long as the
performance model of each stage is known, stages can be arbi-
trarily added or removed from the system and the performance
can still be derived without any new measurements.

Furthermore, Relation (iv) states that in a pipeline, there is
usually wasted potential. Intuitively, the faster stage always has
to wait for the slower stage, which wastes time while the faster
stage is stalling. This can be circumvented when sequentially
concatenating both tasks and using the two threads from the
former pipeline inside a task pool. This way both threads work
as long as there are items to process and do not have to wait for
one another, resulting in a potentially faster program.

We refrain from giving a relational claim that encompasses
MapReduce in addition to task pool or pipeline. On the one
hand the Equations (i) and (ii) are mere sanity conditions on
our understanding of the pipeline pattern. On the other hand
MapReduce exhibits an intrinsic internal flow of elements, so
it cannot be split as in Equation (iii) or translated into a simple
task pool that executed sequential operations as in Relation (iv).

5.2. Validation of relational claims
In this subsection, we test the claims from Subsection 5.1,

where we defined an relational theory for composition operators
that apply to the parallel design patterns task pool and pipeline,
as well as sequential concatenation. The first two Equations
state that the composition operator for the parallel pipeline is (i)
associative and (ii) commutative with respect to the tasks. The
third Equation (iii) states that a parallel pipeline where each
stage is a task pool executing some work has the same per-
formance as a task pool where the tasks are parallel pipelines
executing the same work. The fourth Relation (iv) asserts that
when using a pipeline without further load-balancing capabili-
ties, there might be a better distribution of threads.

We show a representative subset of pipeline configurations
that use the inc, qsort, and nop tasks. Table 4 shows the mea-
sured performance models for these configurations. Not only
are the models in the same complexity class but even the coef-
ficients show less then 10% variation across all configurations.
The models show that the parallel pipeline design pattern is as-
sociative and commutative. The commutative property can also
be seen in Table 2, where the models of pipe(qsort,inc) and
pipe(inc,qsort) are effectively equal.

The third Equation states that layering parallel design pat-
terns correctly should have no impact on performance. In order
to compare the performance models, we have created software
systems following both design patterns, but applied in a differ-
ent order. The first configuration is a pipeline that uses stages
that rely on task pools to process the tasks, while the second
type is a task pool that uses a pipeline containing stages that
are responsible for processing the data. The resulting models
are summarized in Table 6 and show that all configurations per-
form similarly—well apart from inherent run-to-run variations.
We did not evaluate this claim, in contrast to the other claims,
with more than 8 threads per task pool. This is due to the way

12

Table 6: Performance neutrality of different layerings for parallel design patterns. Execution time is in nanoseconds. For the number of input elements x, this gives
the respective performance models.

Parameter pipe(tpooln(qsort),tpooln(inc)) [ns] tpooln(pipe(qsort,inc)) [ns]

n = 1 1101.71 · x log2 x 1072.10 · x log2 x
n = 2 578.47 · x log2 x 602.41 · x log2 x
n = 4 298.89 · x log2 x 315.89 · x log2 x
n = 8 165.51 · x log2 x 181.19 · x log2 x

the implementations of task pool and pipeline use threads inter-
nally. With this we can confidentially say that layering parallel
patterns and the ordering in which patterns are layered, if done
correctly, does not affect performance.

For the fourth relation we evaluated the different pipeline
configurations we used in Table 2 but substituted the pipeline
for a sequential concatenation inside a task pool with two
threads. This way, the total number of threads in the programs
stays the same, but they are redistributed in order to reduce the
stalling time of the threads. As shown in Table 7, the claim
holds true for our test cases. However, we would expect an
equality in Column 4, when performing two inc, one after the
other. We attribute this to the communication between the two
threads when passing data from one stage of the pipeline to the
other one.

6. Conclusion

We introduced a modular approach to the construction of
performance models that can be used not only to optimize ex-
isting software or choose between implementation alternatives,
but even (and arguably especially) during the design of parallel
software. Leveraging the properties of parallel design patterns,
we can now construct accurate performance models in a brick-
by-brick fashion from performance models of software compo-
nents, as long as the combination of the components follows the
design pattern.

In this extended version of our previously published paper,
we also show how to extend the previously published method
to incorporate multiple compute nodes, as well as the ability to
deal with complex operations that change the number of pro-
cessed items. We demonstrate this by the example of MapRe-
duce, and depending on its implementation our modular perfor-
mance models had an relative error smaller than 17 % (GrPPi),
21 % (Hadoop in realistic use case), and 36 % (own implemen-

tation with large pictures). Even in the other test cases, our
method still produced a lower bound and the modular model
was in the same order of magnitude as the monolithic model.

The resulting models can be created not just without need-
ing to repeat the entire measurement process whenever a com-
ponent of the system is changed, but rather allow detailed per-
formance prediction before an implementation of the system as
a whole even exists. Our modular approach provides significant
support to developers trying to design, maintain, or optimize
parallel programs. It also reduces the time to obtain a practical
performance model significantly by canceling the need to have
a working prototype for an application completely. Thus, if a
developer wishes to estimate the run time of a new application
built from the considered design patterns, they can simply mea-
sure the execution time of the serial parts (even with dummy in-
put), and extrapolate a precise performance model for the whole
application.

We plan to further investigate this method and study the
current limitations, which include synchronization overhead,
hardware contention, and work sharing, to name the three most
prominent ones.

Acknowledgment

This work was funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– Project Nos. 323299120; 320898076; 449683531, and by the
US Department of Energy under Grant No. DE-SC0015524.
The authors gratefully acknowledge to have conducted a part
of this study on the Lichtenberg high-performance computer of
TU Darmstadt.

Table 7: Exchange of pipeline with task pool and sequential concatenation. Execution time is measured in nanoseconds. For the number of input elements x, this
gives the respective performance models.

Configuration Monolithic model [ns] Monolithic model of pipeline [ns]

tpool2(seq(qsort,nop)) 546.40 · x log2 x 1086.11 · x log2 x
tpool2(seq(qsort,inc)) 561.84 · x log2 x 1105.29 · x log2 x
tpool2(seq(inc,qsort)) 564.59 · x log2 x 1076.89 · x log2 x
tpool2(seq(inc,inc)) 607.06 · x 677.05 · x
tpool2(seq(inc,nop)) 355.67 · x 670.32 · x

13

References

[1] K. Keutzer, T. Mattson, Our Pattern Language – A Design Pattern Lan-
guage for Engineering (Parallel) Software, https://patterns.eecs.
berkeley.edu/ (Online: February 19, 2019).

[2] T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Programming,
1st Edition, Addison Wesley, 2004.

[3] M. McCool, J. Reinders, A. D. Robison, Structured Parallel Program-
ming: Patterns for Efficient Computation, Morgan Kaufmann, 2012.

[4] C. Alexander, S. Ishikawa, M. Silverstein, A Pattern Language: Towns,
Buildings, Construction, Oxford University Press, 1977.

[5] X. Yang, J. Sun, An analytical performance model of mapreduce, in: 2011
IEEE International Conference on Cloud Computing and Intelligence
Systems, 2011, pp. 306–310. doi:10.1109/CCIS.2011.6045080.

[6] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkin-
son, H. Kuno, U. Dayal, Analytical performance models for mapreduce
workloads, International Journal of Parallel Programming 41 (4) (2013)
495–525.

[7] A. Calotoiu, T. Hoefler, M. Poke, F. Wolf, Using automated performance
modeling to find scalability bugs in complex codes, in: Proc. of the Inter-
national Conference on High Performance Computing, Networking, Stor-
age and Analysis, 2013, pp. 45:1–45:12.

[8] M. P. Forum, Mpi: A message-passing interface standard, Tech. rep.,
USA (1994).

[9] A. Calotoiu, T. Höhl, H. Mantel, T. Nguyen, F. Wolf, Designing ef-
ficient parallel software via compositional performance modeling, in:
Proc. of the Workshop on Programming and Performance Visualization
Tools (ProTools), held in conjunction with the Supercomputing Con-
ference (SC19), Denver, CO, USA, 2019, pp. 17–24. doi:10.1109/

ProTools49597.2019.00008.
[10] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large

clusters, Commun. ACM 51 (1) (2008) 107–113. doi:10.1145/

1327452.1327492.
[11] Apache Software Foundation, Hadoop.

URL https://hadoop.apache.org

[12] S. Gorlatch, M. Cole, Parallel Skeletons, Springer US, Boston, MA, 2011,
pp. 1417–1422. doi:10.1007/978-0-387-09766-4_24.

[13] S. Gorlatch, Toward formally-based design of message passing programs,
IEEE Transactions on Software Engineering 26 (3) (2000) 276–288. doi:
10.1109/32.842952.

[14] D. del Rio Astorga, M. F. Dolz, J. Fernández, J. D. Garcı́a, A generic
parallel pattern interface for stream and data processing, Concurrency
and Computation: Practice and Experience 29 (24) (2017) e4175, e4175
cpe.4175. arXiv:https://onlinelibrary.wiley.com/doi/pdf/

10.1002/cpe.4175, doi:10.1002/cpe.4175.
[15] J. Talbot, R. M. Yoo, C. Kozyrakis, Phoenix++: Modular mapreduce for

shared-memory systems, in: Proc. of the Second International Workshop
on MapReduce and Its Applications, MapReduce ’11, Association for
Computing Machinery, New York, NY, USA, 2011, p. 9–16. doi:10.

1145/1996092.1996095.
[16] L. Adhianto, S. Banerjee, M. W. Fagan, M. W. Krentel, G. Marin,

J. Mellor-Crummey, N. R. Tallent, HPCToolkit: Tools for Performance
Analysis of Optimized Parallel Programs, Concurrency and Computation:
Practice and Experience 22 (6) (2010) 685–701.

[17] S. S. Shende, A. D. Malony, The TAU Parallel Performance System, In-
ternational Journal of High Performance Computing Applications 20 (2)
(2006) 287–331.

[18] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, B. Mohr,
The Scalasca Performance Toolset Architecture, Concurrency and Com-
putation: Practice and Experience 22 (6) (2010) 702–719.

[19] D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler,
M. Gerndt, A. Knüpfer, D. Lorenz, A. D. Malony, W. E. Nagel,
Y. Oleynik, C. Rössel, P. Saviankou, D. Schmidl, S. S. Shende, M. Wag-
ner, B. Wesarg, F. Wolf, Score-P: A Unified Performance Measure-
ment System for Petascale Applications, in: Proc. of the CiHPC: Com-
petence in High Performance Computing, HPC Status Konferenz der
Gauß-Allianz e.V., Schwetzingen, Germany, June 2010, Gauß-Allianz,
Springer, 2012, pp. 85–97.

[20] W. Nagel, M. Weber, H.-C. Hoppe, K. Solchenbach, VAMPIR: Visualiza-
tion and Analysis of MPI Resources, Supercomputer 12 (1) (1996) 69–80.

[21] J. S̆ilc, B. Robič, T. Ungerer, Progress in Computer Research, Nova Sci-

ence Publishers, Inc., Commack, NY, USA, 2001, Ch. Asynchrony in
Parallel Computing: From Dataflow to Multithreading, pp. 1–33.

[22] D. Basin, G. Caronni, S. Ereth, M. Harvan, F. Klaedtke, H. Mantel, Scal-
able offline monitoring, in: Proc. of the 14th International Conference on
Runtime Verification (RV), 2014, pp. 31–47.

[23] A. Brogi, M. Danelutto, D. De Sensi, A. Ibrahim, J. Soldani, M. Torquati,
Analysing Multiple QoS Attributes in Parallel Design Patterns-Based
Applications, International Journal of Parallel Programming (11 2016).
doi:10.1007/s10766-016-0476-8.

[24] N. R. Tallent, A. Hoisie, Palm: Easing the burden of analytical perfor-
mance modeling, in: Proc. of the 28th ACM International Conference on
Supercomputing, ICS ’14, ACM, New York, NY, USA, 2014, pp. 221–
230. doi:10.1145/2597652.2597683.
URL http://doi.acm.org/10.1145/2597652.2597683

[25] S. Lee, J. S. Meredith, J. S. Vetter, Compass: A framework for auto-
mated performance modeling and prediction, in: Proc. of the International
Conference on Supercomputing (ICS), Newport Beach, CA, USA, ACM,
2015. doi:10.1145/2751205.2751220.

[26] J. Hammer, G. Hager, J. Eitzinger, G. Wellein, Automatic loop kernel
analysis and performance modeling with kerncraft, in: Proc. of the 6th
International Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems, PMBS ’15, ACM,
New York, NY, USA, 2015, pp. 4:1–4:11. doi:10.1145/2832087.

2832092.
URL http://doi.acm.org/10.1145/2832087.2832092

[27] S. F. Goldsmith, A. S. Aiken, D. S. Wilkerson, Measuring Empirical
Computational Complexity, in: Proc. of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE
’07, ACM, New York, NY, USA, 2007, pp. 395–404. doi:10.1145/

1287624.1287681.
URL http://doi.acm.org/10.1145/1287624.1287681

[28] L. Carrington, A. Snavely, N. Wolter, A performance prediction frame-
work for scientific applications, Future Generation Computer Systems
22 (3) (2006) 336–346.

[29] A. Grebhahn, C. Rodrigo, N. Siegmund, F. J. Gaspar, S. Apel,
Performance-influence models of multigrid methods: A case study on
triangular grids, Concurrency and Computation: Practice and Experience
29 (17) (2017) e4057.

[30] B. C. Lee, D. M. Brooks, B. R. D. Supinski, M. H. Schulz, K. Singh,
S. McKee, Methods of inference and learning for performance modeling
of parallel applications, in: Proc. of the 12th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (PPoPP), San Jose,
CA, USA, 2007, pp. 249–258.

[31] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, R. Ricci,
Taming performance variability, in: Proc. of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), Carls-
bad, CA, USA, 2018, pp. 409–425.

[32] P. Reisert, A. Calotoiu, S. Shudler, F. Wolf, Following the Blind Seer –
Creating Better Performance Models Using Less Information, in: Proc. of
the 23rd Euro-Par Conference, Santiago de Compostela, Spain, Lecture
Notes in Computer Science, Springer, 2017, pp. 106–118.

[33] A. Gandomi, A. Movaghar, M. Reshadi, A. Khademzadeh, Designing
a mapreduce performance model in distributed heterogeneous platforms
based on benchmarking approach, The Journal of Supercomputing (2020)
1–27.

[34] D. Glushkova, P. Jovanovic, A. Abelló, Mapreduce performance model
for hadoop 2.x, Information Systems 79 (2019) 32–43, special issue on
DOLAP 2017: Design, Optimization, Languages and Analytical Process-
ing of Big Data. doi:https://doi.org/10.1016/j.is.2017.11.

006.
[35] H. Herodotou, S. Babu, Profiling, what-if analysis, and cost-based op-

timization of mapreduce programs, Proc. VLDB Endow. 4 (11) (2011)
1111–1122. doi:10.14778/3402707.3402746.

[36] J. Pješivac-Grbović, G. Bosilca, G. E. Fagg, T. Angskun, J. J. Dongarra,
MPI Collective Algorithm Selection and Quadtree Encoding, Parallel
Computing 33 (9) (2007) 613–623.

[37] N. Weber, M. Waechter, S. C. Amend, S. Guthe, M. Goesele, Rapid,
detail-preserving image downscaling, ACM Trans. Graph. 35 (6) (Nov.
2016). doi:10.1145/2980179.2980239.

14

https://patterns.eecs.berkeley.edu/
https://patterns.eecs.berkeley.edu/
https://doi.org/10.1109/CCIS.2011.6045080
https://doi.org/10.1109/ProTools49597.2019.00008
https://doi.org/10.1109/ProTools49597.2019.00008
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://hadoop.apache.org
https://hadoop.apache.org
https://doi.org/10.1007/978-0-387-09766-4_24
https://doi.org/10.1109/32.842952
https://doi.org/10.1109/32.842952
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4175
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4175
https://doi.org/10.1002/cpe.4175
https://doi.org/10.1145/1996092.1996095
https://doi.org/10.1145/1996092.1996095
https://doi.org/10.1007/s10766-016-0476-8
http://doi.acm.org/10.1145/2597652.2597683
http://doi.acm.org/10.1145/2597652.2597683
https://doi.org/10.1145/2597652.2597683
http://doi.acm.org/10.1145/2597652.2597683
https://doi.org/10.1145/2751205.2751220
http://doi.acm.org/10.1145/2832087.2832092
http://doi.acm.org/10.1145/2832087.2832092
https://doi.org/10.1145/2832087.2832092
https://doi.org/10.1145/2832087.2832092
http://doi.acm.org/10.1145/2832087.2832092
http://doi.acm.org/10.1145/1287624.1287681
http://doi.acm.org/10.1145/1287624.1287681
https://doi.org/10.1145/1287624.1287681
https://doi.org/10.1145/1287624.1287681
http://doi.acm.org/10.1145/1287624.1287681
https://doi.org/https://doi.org/10.1016/j.is.2017.11.006
https://doi.org/https://doi.org/10.1016/j.is.2017.11.006
https://doi.org/10.14778/3402707.3402746
https://doi.org/10.1145/2980179.2980239

	Introduction
	Related Work
	Composition Operators for Performance Models
	Parallel design patterns
	Task pool
	Pipeline
	MapReduce

	A term language for structured programs
	Performance metrics
	Composition operators for performance models
	General preliminaries
	Sequential concatenation
	Task pool
	Pipeline
	MapReduce

	Evaluation
	Tasks
	Tasks for task pool and pipeline
	Tasks for MapReduce

	Composition operators
	Sequential concatenation
	Task pool
	Pipeline
	MapReduce, Hadoop and GrPPi
	MapReduce, own framework

	Relational theory for composition operators
	Relational claims for composition operators
	Validation of relational claims

	Conclusion

