Learning to Make Compiler Optimizations More
Effective

Rahim Mammadli
Department of Computer Science
Technical University of Darmstadt
Germany
rahim.mammadli@tu-darmstadt.de

Felix Wolf
Department of Computer Science
Technical University of Darmstadt
Germany
felix.wolf@tu-darmstadt.de

Abstract

Because loops execute their body many times, compiler de-
velopers place much emphasis on their optimization. Never-
theless, in view of highly diverse source code and hardware,
compilers still struggle to produce optimal target code. The
sheer number of possible loop optimizations, including their
combinations, exacerbates the problem further. Today’s com-
pilers use hard-coded heuristics to decide when, whether,
and which of a limited set of optimizations to apply. Often,
this leads to highly unstable behavior, making the success
of compiler optimizations dependent on the precise way a
loop has been written. This paper presents LoopLearner,
which addresses the problem of compiler instability by pre-
dicting which way of writing a loop will lead to efficient
compiled code. To this end, we train a neural network to
find semantically invariant source-level transformations for
loops that help the compiler generate more efficient code.
Our model learns to extract useful features from the raw
source code and predicts the speedup that a given trans-
formation is likely to yield. We evaluate LoopLearner with
1,895 loops from various performance-relevant benchmarks.
Applying the transformations that our model deems most
favorable prior to compilation yields an average speedup
of 1.14x. When trying the top-3 suggested transformations,
the average speedup even increases to 1.29x. Comparing the
approach with an exhaustive search through all available

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MAPS 21, June 21, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8467-4/21/06...$15.00
https://doi.org/10.1145/3460945.3464952

Marija Selakovic
Department of Computer Science
Technical University of Darmstadt
Germany
m.selakovic89@gmail.com

Michael Pradel
Department of Computer Science
University of Stuttgart
Germany
michael@binaervarianz.de

code transformations shows that LoopLearner helps to iden-
tify the most beneficial transformations in several orders of
magnitude less time.

CCS Concepts: « Software and its engineering — Com-
pilers; - Computing methodologies — Neural net-
works; Supervised learning by regression.

Keywords: compiler optimizations, loop transformation,
deep learning

ACM Reference Format:

Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel.
2021. Learning to Make Compiler Optimizations More Effective. In
Proceedings of the 5th ACM SIGPLAN International Symposium on
Machine Programming (MAPS °21), June 21, 2021, Virtual, Canada.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3460945.
3464952

1 Introduction

The optimization techniques used in modern compilers are
continuously improving. In view of the increasing complex-
ity of hardware and software, the effectiveness of compiler
optimizations becomes crucial in achieving satisfactory sys-
tem performance. However, despite the tremendous progress
of compiler technology, the optimizations a compiler applies
are usually limited to a fixed set of program transformations.
Furthermore, compiler developers manually design optimiza-
tion heuristics that control program compilation and opti-
mization. Writing these heuristics requires expert knowledge
and is one of the most difficult and time-consuming tasks in
compiler development. This is why compiler optimizations
are not guaranteed to produce optimal output, and in fact,
they may even degrade performance in some cases.

A recent study by Gong et al. [12] illustrates the challenges
compiler developers face today. Looking at how source-level
loop transformations affect performance, the authors ob-
served that compilers are not only far from producing opti-
mal code, but are also highly unstable: given semantically
equivalent variants of the same piece of code, compilers

https://doi.org/10.1145/3460945.3464952
https://doi.org/10.1145/3460945.3464952
https://doi.org/10.1145/3460945.3464952

MAPS ’21, June 21, 2021, Virtual, Canada

produce target code that differs significantly in terms of per-
formance. As a result of this “compiler instability”, as Gong
et al. named the problem, programmers are left without any
guidance as to which variant of the source code to feed into
the compiler. To maximize performance, a programmer may
choose to deal with compiler instability by (a) systemati-
cally trying as many semantically equivalent code variants
as possible and measure which performs best, or (b) learning
through experience which variant works best for a given
compiler. Since the first option is very time consuming and
the second option requires expert knowledge of the underly-
ing compiler, both strategies are of limited use in practice.

To mitigate the problem of compiler instability, we
present LoopLearner, a learning-based approach that pre-
dicts semantics-preserving transformations of a loop that
will improve the performance of the compiled program.
Given a loop and a search space of such transformations,
LoopLearner predicts which transformation or sequence
of transformations will yield the best-performing target
code with a given compiler. The search space explored by
LoopLearner consists of around 3,000 sequences of transfor-
mations, composed of five basic optimizations, their combi-
nations, and different parametrizations. We focus on loops
for two reasons. First, optimizing loops is important because
the loop body is repeatedly executed, not seldom thousands
of times, which in total accounts for a significant fraction
of the overall execution time. Second, loop transformations
are one of the major optimizations supported by modern
compilers, which is why loops are at the core of compiler
instability.

We envision LoopLearner to be useful in multiple scenar-
ios. First, it can assist developers in deciding how to write a
loop. By predicting which variant of a loop yields the best
performance, developers can make an informed decision, in-
stead of relying on their intuition. Second, the approach can
guide an automated pre-processing step that applies code
transformations before handing the code over to the com-
piler. Such pre-processing does not require any developer
attention and mitigates the problem of compiler instabil-
ity without the need to change the compiler itself. And, of
course, one could also integrate our predictive model directly
into the compiler to improve its stability. In the second and
third usage scenario, LoopLearner’s predictions complement
the built-in optimization heuristics of the compiler by pre-
senting the code in a way that will make best use of these
heuristics.

We define the problem of predicting the best transfor-
mation for a loop as a regression problem: based on the
source code of a given loop, LoopLearner learns to predict
the speedup that a certain transformation is likely to yield.
After training the model with tens of thousands of examples,
we query the model for each transformation to determine
which one gives the highest performance improvement. To

10

Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel

effectively learn the performance benefits of transforma-
tions on specific code, we need a suitable encoding of both
inputs. LoopLearner encodes source code as a sequence of
tokens, and we compare different representations of individ-
ual tokens. To encode transformations, we present a novel,
compact representation that ensures that similar transfor-
mations have a similar representation. LoopLearner uses a
convolutional neural network architecture, which has been
proven as very effective on compositional data.

One of the key challenges in choosing among the available
code optimizations is the large space of possible transforma-
tions. A naive approach could apply each transformation,
then run the compiled code, and measure its execution time.
Unfortunately, this approach takes significant time, in par-
ticular, because reliable performance measurements require
executing the code repeatedly. Instead of executing trans-
formed code, LoopLearner queries a predictive model once
per transformation. Since querying our neural model is very
fast and because queries for different transformations can be
run in batches, our approach reduces the effort for finding a
suitable transformation by multiple orders of magnitude.

Prior learning-based work on improving optimizing com-
pilers aims at finding suitable compiler heuristics, including
the work by Yuki et al. [32], who predict optimal loop tiling
sizes, Stephenson and Amarasinghe [30], who determine
the best loop unrolling factor, and Simon et al. [29], who
construct compiler heuristics automatically. Our approach
differs from those approaches in several ways. One differ-
ence is that we consider a much larger space of optimiza-
tions, that is, nearly 3,000 combinations of five common loop
optimizations—unrolling, unroll and jam, tiling, distribution,
and interchange, including variations of their parameters.
Another distinctive feature of our approach is that it rea-
sons about source-level transformations to be applied before
passing a program to the compiler, instead of optimization
decisions taken in the compiler. Finally, LoopLearner in-
volves neither the manual design nor the pre-selection of
any features. Instead, we feed the source code as-is into a
neural network that learns how to identify suitable features
on its own. Cummins et al. [9] also train a neural model that
predicts from raw code how to support code optimization.
However, their model focuses on a small set of optimization
parameters used in the compiler, e.g., whether to map a ker-
nel to the CPU or the GPU, whereas we consider a larger
space of transformations applied before passing code to the
compiler.

To evaluate LoopLearner we use an extensive collection
of nested loops from the empirical study by Gong et al.
[12]. To train the model, we consider all transformations
the study used to create loop mutations. In total, the data set
amounts to around 70,000 data points, originating from 1,895
unique loops from 18 benchmarks and almost 3,000 unique
transformations. Unless stated otherwise a transformation
refers to a sequence of one or more loop transformations

Learning to Make Compiler Optimizations More Effective

and their parameters. We find that our model has a precision
of 73% when predicting speedups. Furthermore, by ranking
all transformations based on their predicted performance
improvements and by applying the top-1 transformation,
LoopLearner achieves a speedup of 1.14x, on average across
all loops. If the developer or tool tries the top-3 suggested
transformations and picks the best one, the average speedup
increases even to 1.29x.

In summary, this paper makes the following contributions:

o Learning-based approach to mitigate compiler instabil-
ity. We are the first to systematically mitigate the problem
of compiler instability through a learned model that predicts
source-to-source transformations likely to make compiler
optimizations more effective. The deep learning-based model
automatically extracts features from a given loop, without
any manual feature engineering,.

e Search space. The approach scales to a large search
space consisting of thousands of transformations. The search
space is built from five common and semantically invariant
loop transformations, applied alone or in sequence, and their
several parameters.

e Empirical evidence. We empirically demonstrate that
applying the transformation our model deems most favorable
yields an average speedup of 1.14x (for the best predicted
transformation) or 1.29x (when considering the top-3 predic-
tions).

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the problem of compiler instability de-
scribed by Gong et al. [12]. Section 3 presents our approach
to the selection of beneficial loop transformations. Section 4
discusses experimental settings and results. Finally, we dis-
cuss related work in Section 5 and review our results in
Section 6.

2 Background

The attribute stable characterizes a compiler that produces
the same performance for any semantically equivalent vari-
ant of a program. In their study, Gong et al. [12] evaluate the
stability of modern compilers by applying several source-
to-source transformations to obtain semantically equivalent
code variants and by measuring the variation in their execu-
tion time. To illustrate the effect of program transformations
on compiler stability, consider the example in Listing 1. The
first loop is extracted from function Regclass in the SPEC
CPU2000 benchmark suite. After unrolling the loop with
a factor of two, yielding the second loop in the listing, the
Clang compiler generates output that is, on average, 1.19x
faster than the original loop.

Gong et al. quantify compiler stability using the follow-
ing two metrics: intra-compiler and inter-compiler stability.
The first metric, which is the focus of this paper, measures
the stability of a single compiler, while the second metric
measures the stability across multiple compilers. Although

11

MAPS °21, June 21, 2021, Virtual, Canada

/* original loop =*/
for(Class = 0; Class < 256; ++Class){
if(opnd[1 +(Class >> 3 & 31)] & 1 <<(Class & 7)){
132 cf = Perl_fold[Class];
opnd[1 +(cf >> 3 & 31)] |= 1 <<(cf & 7);

}

/* unrolled, factor = 2 %/
for(Class = 0; Class <= 255; Class += 2) {
if(opnd[1 +(Class >> 3 & 31)] & 1 <<(Class & 7)){
132 cf = Perl_fold[Class];
opnd[1 +(cf >> 3 & 31)] |= 1 <<(cf & 7);
3}
if(opnd[1 +(Class+1 >> 3 & 31)] & 1 <<(Class+1 & 7)){
I32 cf = Perl_fold[Class+1];
opnd[1 +(cf >> 3 & 31)] |= 1 <<(cf & 7);
}
3

Listing 1. Original and unrolled loop in function Regclass
from the 253.perlbmk program in the SPEC CPU2000 bench-
mark suite.

the authors of the study concede that building a perfectly
stable compiler is almost impossible, they show that modern
compilers have ample potential for improvement in this di-
rection. Specifically, they demonstrate that applying source-
level transformations prior to compilation can significantly
reduce the performance gap between variants of a loop. A
problem not addressed by prior work is which out of many
possible transformations to apply to a given piece of code.

Table 1. Loop transformations and their parameters.

Transformation Parameters

Unrolling Unroll factor € {2,4, 8}
Unroll-and-jam Loop level, unroll factor € {2, 4}
Tiling Loop level, tile size € {8, 6,32}
Interchange Lexicographical permutation number
Distribution No parameters

The purpose of our work is to address the problem of
intra-compiler instability, by learning code transformations
that should be applied to maximize the performance of the
compiler output. We train our model on the same source code
examples and transformations used in the original study by
Gong et al. Each loop transformation consists of a sequence
of well-known base transformations, which are listed in
Table 1. To ensure that transformations produce semantically
equivalent output for every loop, the space of considered
transformations is limited to sub-sequences of the following
sequences:

e interchange — unroll-and-jam — distribution — un-
rolling
e interchange — tiling — distribution — unrolling

In total, this space consists of almost 3,000 unique transfor-

mations (i.e., sub-sequences), each of them combining base

MAPS ’21, June 21, 2021, Virtual, Canada

transformations with different parameters. The number of
transformations applied to a specific loop is much smaller
(37, on average), because only some transformations can be
applied in a semantics-preserving way. Yet, as we show in
Section 4.6, exhaustively exploring the performance impact
of all transformations is still rather expensive.

3 Approach

In this section, we describe the LoopLearner approach, which
mitigates the problem of compiler instability by predicting
loop transformations that enable the compiler to produce
efficient target code. We start with a rough overview and
potential usage scenarios, before we define our learning prob-
lem. Afterwards, we discuss preprocessing steps applied to
the data, before showing which encoding methods we exper-
imented with. Finally, we introduce our deep neural network
(DNN) architecture and discuss related implementation de-
tails.

3.1 Overview

Figure 1 illustrates our approach on a high level. The input
to our network is a loop and a transformation that may be
applied to it. We assume that the transformation is valid and
does not affect the semantics of the program. For the dataset
used in the evaluation, which we borrowed from Gong et
al. [12], these properties are ensured using the polyhedral
optimizer Polyopt/C ! and the dependence analyzer Candl °.
As a first step, we tokenize the loop with the help of a lexer.
The resulting sequence of tokens is then encoded using one
of the methods discussed in Section 3.6. To feed the trans-
formation into the model, the approach encodes it into a
compact, similarity-preserving representation presented in
Section 3.7. Given both the code and the transformation,
the model predicts the speedup, i.e., the ratio of the original
loop’s execution time divided by the execution time obtained
by applying the transformation. Hence, having a set of valid
transformations that can be applied to a given loop, our neu-
ral network can be used to rank them by their predicted
speedup. Given a ranked list of transformations, the user or
a tool can then apply the transformation that is expected to
produce the highest speedup.

3.2 Interpreting Predictions

To interpret the predictions of our model, we start by speci-
fying a speedup threshold, which is a hyperparameter used
to classify the prediction as either advantageous, disadvan-
tageous, or neutral. Formally, let p be the prediction of the
model, a be the actual performance, and t be a speedup
threshold with ¢ > 1. Then, the prediction is assigned to one
of three classes:

e advantageous, if p > ¢

Ihttp://web.cse.ohio-state.edu/~pouchet.2/software/polyopt
Zhttp://icps.u-strasbg.fr/people/bastoul/public_html/development/candl

12

Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel

Sequence

u ¢> Lexer ¢> @ ¢> Encoder ¢> @]

= Lo =73 D
¢> Transformation ¢>

equence Encoder

Figure 1. High-level overview of LoopLearner.

Expected
speedup

e disadvantageous,ifp < 1—(t —1)
e neutral, if 1 - (t —1) <p <t

A prediction is considered to be accurate if:
P>1Aa>1)V(p<1Aas<l)

Since our solution is intended to achieve speedup and
avoid slowdown, we value a high precision rate for speedup
predictions. Therefore, increasing ¢ (i.e., the range where
the model predicts neutral) allows us to focus on clearer
predictions of speedups and slowdowns, which is likely to
increase precision but to reduce recall.

3.3 Usage Scenarios

A programmer or a tool facing the problem of choosing the
best transformation for a given loop has multiple options.
The first option is to apply no transformations and rely on
the compiler to determine and apply the best set of opti-
mizations. The second option is to test the performance of
the loop with k different transformations and choose the
one producing the highest speedup. As discussed earlier, the
number of transformations, their combinations, and the num-
ber of parameters that each of them accepts can result in a
very high number of distinct transformations applicable to a
given loop. Therefore, in most real-life scenarios measuring
the performance of a loop with all possible transformations
is not feasible. It can, however, be feasible to evaluate k
transformations if k is a relatively small number. Thus, we
envision two usage scenarios of LoopLearner:

o If evaluating the performance of loops with and with-
out applying transformations is prohibitively expensive, we
propose using LoopLearner in a static scenario. This scenario
implies applying the best advantageous transformation in
case one exists.

o If evaluating the performance of up to k mutations
of loops is feasible, LoopLearner can be used in a dynamic
scenario, which involves applying the top-k advantageous
transformations and measuring their actual performance. If
none of these result in actual speedup, the original loop is
left untouched. Otherwise, the transformation resulting in
the highest speedup is chosen.

3.4 Definition of the Learning Problem

The task of predicting a speedup achievable by applying a
given transformation to the loop can be viewed as a regres-
sion problem. Specifically, given a dataset {(L;, T;) — S;}¥

i=1°

http://web.cse.ohio-state.edu/~pouchet.2/software/polyopt
http://icps.u-strasbg.fr/people/bastoul/public_html/development/candl

Learning to Make Compiler Optimizations More Effective

where N is the size of the dataset, S; is the speedup or slow-
down resulting from applying the transformation T; to the
loop L;, our goal is to learn an approximation of the function
f(L,T) = S. To this end, we train a neural network f}, to
minimize the mean squared error as our loss function:

1 N
L=+ ;(ﬁ,@i,m ~ ;)

3.5 Preprocessing

The input given to LoopLearner is a set of loops, each ex-
tracted into a separate file from a larger program. As dis-
cussed in Section 2, our dataset is based on loops used in the
study by Gong et al. Their technique for extracting loops
can be easily applied to other programs as well. Before train-
ing the model, we preprocess the data as follows. For each
loop in the original program, we extract tokens from the
source code, such that a token is represented as a pair (¢, v),
where t is its syntactic type and v is the value, i.e., a string
representation of the token in the source code.

For many learning tasks where the input data is a se-
quence of variable length it is common to select the maxi-
mum length beforehand. The sequences of smaller lengths
are then padded to the maximum length which makes it
possible to vectorize the computations. To avoid long train-
ing times and be able to initialize the building blocks of our
neural network, we exclude sequences of tokens longer than
250. In this way, we are able to achieve good model efficiency
(Section 4.5) while keeping 90% of the loops from the original
dataset.

3.6 Encoding of Source Code

To feed the data to the neural network, we have to encode
both the sequences of tokens and the transformations. En-
coding strongly impacts both the achievable level of accuracy
and the generalization capability of the trained model. We ex-
periment with multiple methods of encoding the sequences
of tokens. Here we describe an interesting subset of these
methods and their differences.

Some encoding methods are based on the frequency of
tokens in the code corpus used for training. Specifically, we
compute the following three frequency maps:

® Fiokens : Token — N, which assigns a frequency to
each token in the code corpus,

e Figs : Identifier — N, which assigns a frequency to
each identifier in the code corpus,

® FsidTokens : Identifier — N, which assigns a frequency
to each token that is neither an identifier nor a literal.

Fixed Encoding. This encoding uses a one-hot encoding
of the top n most popular tokens in F;,kens and assigns a
special unknown token to all other tokens. This method is
easy to implement, but has several disadvantages. First, the
size of the encoding increases linearly with the size n of the

13

MAPS °21, June 21, 2021, Virtual, Canada

vocabulary, resulting in a increasing learning times. Next, all
the words outside the vocabulary are encoded with the same
unique token, which may result in a loss of vital information.
Finally, this method does not discriminate between different
types of tokens, i.e., keywords, identifiers, literals, etc. are
all encoded as equidistant points in space.

Basic Encoding. This encoding is based on a one-hot en-
coding of all tokens in Fs;grokens, i-€., the set of standard
tokens defined by the language, but not identifiers and lit-
erals. For literals, the encoding converts integer literals to
base 10 and assigns special id and unknown tokens to identi-
fiers and other tokens, respectively. The reason for handling
integers specially is that we observe integers to sometimes
influence optimization decisions, e.g., in loop headers. The
main disadvantage of this method is that it uses the same
vector representation for all identifiers and thus hinders the
learning capability of the network.

Comgplex Encoding. This encoding uses F;gs to compute
a minimal set of identifiers that covers at least ¢% of all
occurrences of identifiers across the code corpus. Based on
this set of frequent identifiers, the encoding preserves all
frequent identifiers and only abstracts the remaining ones as
unknown. In contrast to the fixed encoding and similar to the
basic encoding, this method distinguishes among different
token types, but also manages to cover a high number of
unique identifiers.

The first three methods above encode tokens as one-hot
vectors based on pre-calculated statistics. However, they
all share the same disadvantages: the size of the vocabulary
might become very large for big code corpora, and the tokens
outside of the vocabulary are all represented as a single
special unknown token. The following encoding addresses
these limitations.

FastText Encoding. In natural language processing, an
embedding [1, 15, 16, 18] is a mapping of words to a vector
of real numbers with a much lower dimension. It is a popu-
lar language modeling and feature learning technique used
for producing effective source-code representations [4, 26].
In our approach, we apply the FastText embedding tech-
nique [16] to source code. We build FastText embeddings
using all the sequences of token values in our training data.
The size of the embedding vector is set to 100 and the model
is trained for 100 epochs. Once this pre-training step is com-
plete, we train our model by encoding token sequences with
the help of the learned vector mappings for token values.
FastText is especially suitable for source code because many
variable names are combinations of multiple words, for exam-
ple, array_size, viewCount, etc. Fasttext handles such names
by not only learning embeddings for the tokens in the vo-
cabulary but by also calculating embeddings for previously
unseen words. This is done by breaking words into smaller

MAPS ’21, June 21, 2021, Virtual, Canada

sequences, calculating vector representations of each and
using them to reconstruct the encoding of the whole word.

3.7 Encoding of Code Transformations

We have around 3,000 unique transformations in our dataset,
with varying numbers of training samples per transforma-
tion. A naive approach to encoding them is to use a one-hot
encoding. However, in this case, the size of the encoding
vector would be very large and less popular transformations
would not have enough associated data points for the train-
ing process to be successful. Furthermore, a one-hot encod-
ing does not capture similarities between transformations,
that is, all transformations are represented as equidistant
points in space, although some are much more similar than
others.

To address the aforementioned points, we present compact
encodings of code transformations, where each sequence of
transformations is represented as a feature vector. The en-
coding exploits the fact that transformations can only be
applied in particular orders that preserve the semantics of
the original program (Section 2). The set of transformations
included in a sequence of transformations is sufficient to
uniquely specify the sequence, therefore the ordering infor-
mation is omitted from the encoding. The features in the
encoding indicate the presence or absence of a particular
transformation and the set of its parameters. We formally
define the encoding as follows.

Definition 3.1 (Compact encoding of transformations). We
encode a sequence of transformations T as a concatenation
of vectors T, .., Ty, where each T; represents a vector encod-
ing for transformation i. The size of a vector T; is equal to a
maximum number of different parameterizations of transfor-
mation i. The first element in T; indicates whether i is applied,
while the subsequent elements indicate which parameter of
i is enabled.

3.8 DNN Architecture

To train a model that predicts beneficial transformations for
a loop, we consider two different network architectures: re-
current and convolutional. Recurrent neural networks (RNN)
have been designed to recognize patterns in sequences of
data. In contrast, convolutional neural networks (CNN) are
most suitable for compositional data. Since source code is
not only sequential but also highly compositional, CNNs are
a good fit for this task. Our evaluation has shown CNNs to
have higher accuracy compared to RNNs. Therefore CNNs
have been chosen as our default architecture. Specifically,
we adopted ideas from DenseNet [14], a well-known design
from the field of computer vision, and tailored the archi-
tecture to fit our learning problem. Figure 2 illustrates the
architecture of our model.

14

Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel

Encoded Tokens Fully Connected

1 for Layer
Feature Extractor ~
2 (
3 [int \ #fj;: ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, #ﬁ;
2 i \‘) Dense Layers
¥
5 =)
6)
x6
ﬁ Prediction
250 | }
l unr. I unr.jam | tilingl interchange I distrib. l ﬁ

Encoded Transformation

Figure 2. Prediction process for a sequence of tokens and
transformations. The encoded sequence of tokens is first
passed into the feature extractor. The results are concate-
nated with the encoded vector of transformations and passed
to the fully connected layer which predicts the speedup.

3.9 Implementation

The code is parsed and tokenized by using the lexer com-
ponent of the Python pycparser® library, a parser for the C
language. To build and train the models we use the PyTorch
framework, version 0.4.1*. We implement LoopLearner as an
extensible framework that takes as input the following key
parameters:

e sequence encoding: fixed, basic, complex, or fasttext
e transformation encoding: one-hot or compact
e model type: recurrent or convolutional

This allows easy plugin of new types of encodings and
neural network architectures.

4 Evaluation
Our evaluation focuses on the following questions:

o How effective is LoopLearner at predicting beneficial loop
transformations? (Sections 4.2, 4.3)

e What speedups are enabled by LoopLearner? (Section 4.4)

e How efficient is LoopLearner? (Section 4.5)

e How does the approach compare to exhaustively trying
all loop transformations? (Section 4.6)

e What is the influence of the speedup threshold? (Sec-
tion 4.7)

4.1 Experimental Setup

Our dataset is built from 1,895 base loops extracted by prior
work [12] from various benchmarks, software libraries, and
machine-learning kernels written in C. Extracting each loop

3https://github.com/eliben/pycparser
4https://pytorch.org/docs/0.4.1/

https://github.com/eliben/pycparser
https://pytorch.org/docs/0.4.1/

Learning to Make Compiler Optimizations More Effective

into a standalone program that replicates the data environ-
ment of the original benchmark, applying sequences of trans-
formations, and measuring their performance yields a dataset
of roughly 70,000 (loop, transformation, speedup) triples. The
loops are compiled with the GNU GCC compiler version 6.2,
using the -O3 flag, and executed on an Intel Xeon E5-1630
V3 processor.

We randomly shuffle and split the loops and their asso-
ciated transformations into training and validation sets in
4:1 ratio. Splitting by loops ensures that the evaluation mea-
sures how well the approach performs on previously unseen
loops. Unless explicitly stated otherwise, we use speedup
threshold ¢ = 1.0. We trained our models on a single server
with two Intel(R) Xeon(R) Gold 6126 2.60GHz CPUs, 64GBs
of main memory, two NVIDIA GeForce GTX 1080 Ti GPUs,
and Ubuntu 16.04 LTS operating system. For the purpose of
training any given model, a single GPU was used at a time.

4.2 Overall Accuracy of Predictions

4.2.1 Metrics. We first accuracy of
LoopLearner’s predictions across all loops and transfor-
mations in the validation set. Let T be the set of all (loop,
transformation) pairs. Let T* € T and T~ C T be the

measure the

subset of all pairs known to cause a speedup and slowdown,
respectively. Let P* C T and P~ C T be the subset of all
the pairs predicted to result in a speedup and slowdown,
respectively. We consider the following metrics:

o Total accuracy (%) is the percentage of elements out of
T thatare in P* NTH)U (P NT").

o Speedup recall (%) is the percentage of elements out of
T* that are in P* NT™.

o Speedup precision (%) is the percentage of elements out
of P* that are in P* N T*.

o Slowdown recall (%) is the percentage of elements out
of T~ thatarein P~ NT".

e Slowdown precision (%) is the percentage of elements
out of P~ thatarein P~ NT".

We calculate the last four metrics alongside the total accu-
racy for two reasons. First, our dataset is imbalanced—more
than 80% of transformations result in slowdown and there-
fore high total prediction accuracy alone does not necessarily
imply high accuracy for both speedups and slowdowns. Sec-
ond, the recall and precision metrics help understand how
well the approach performs in a particular usage scenario.
For example, speedup precision shows how often a predicted
speedup indeed improves the loop’s performance. We also
show the F1 score (harmonic mean of precision and recall).

4.2.2 Results. Table 2 summarizes the results. To under-
stand the influence of different encodings and models, we
report results for different variants of LoopLearner. The best
result for each metric is highlighted in bold font. Overall, the
approach predicts beneficial loop transformations with high
accuracy (up to 88%). Comparing speedup and slowdown

15

MAPS °21, June 21, 2021, Virtual, Canada

Table 2. Overall accuracies achieved by employing different
encoding methods. Training accuracy reflects the highest ac-
curacy on the training set, other values refer to the validation
set.

Acc. (%) Speedup (%) | Slowdown (%)
Seq. Encoding |Train. Valid.|Rec. Prec. F1|Rec. Prec. F1
Trans. Encoding: Compact Model: CNN
Fixed(n=1,000) | 92.5 87.6 [55.9 63.0 59.2|93.7 91.7 92.7
Basic 90.0 84.0 | 7.7 54.8 13.5/98.8 84.7 91.2
Complex(c=70%)| 92.1 87.9 |57.0 64.1 60.4/93.8 91.9 92.9
Complex(c=80%)| 92.0 87.7 |58.2 62.9 60.5(93.4 92.1 92.7
FastText 92.0 88.1 |54.8 66.1 59.9/94.6 91.6 93.0
Trans. Encoding: One-hot Model: CNN
FastText [892 87.1 [43.0 653 51.8[95.6 89.7 925
Trans. Encoding: Compact Model: RNN
FastText [848 840 | 44 56.0 8.1[99.3 843 912

predictions, the model is particularly effective at predicting
that a transformation will cause a slowdown (95% recall, 92%
precision), but also provides reasonable results for speedups
(55% recall, 66% precision).

Comparison of Source Code Encodings. Remarkably,
fixed encoding achieves the highest accuracy on the train-
ing set and relatively good accuracy on the validation set,
while also being the easiest to implement. We attribute this
result to the higher dimensionality of the input data. Since
each token is represented as a vector in space R1%!, that
is, each of the top 1,000 most common tokens and a special
unknown token get unique representations, it is quite easy
for the network to learn to differentiate between distinct
tokens. However, apart from the size of the input data, the
disadvantage of using fixed encoding when compared to
more advanced methods is that the gap between the training
and validation set accuracy for this method is also quite high,
which means it tends to overfit the training data while not
performing as well on the validation set. The reason is that
the top 1,000 most common tokens are extracted from the
training set, which is likely to be somewhat different from
the validation set.

Although the accuracy achieved by the “basic” encoding
is roughly that of other encodings, the speedup prediction
results show a significant weakness of the “basic” encoding.
The model achieves only 7.7% speedup recall, because crucial
information is lost when discarding identifier names, float lit-
erals, and char literals during encoding. The main take-away
of these results is that identifier names and literal values
are helpful in learning-based program analysis, a finding
in line with other work on name-based and learning-based
analysis [19, 26].

The “complex” encoding achieves substantially higher ac-
curacy compared to “basic”, which confirms the importance
of encoding identifier names. However, comparing the two

MAPS ’21, June 21, 2021, Virtual, Canada

variants of “complex”, which keep 70% and 80% of all iden-
tifiers, respectively, shows that adding another 10% of less
common identifier names does not raise the accuracy any
further. On the contrary, adding rare identifier names can be
harmful, since it is likely that the model will memorize the
training samples containing them.

The “FastText” encoding achieves the highest overall vali-
dation accuracy, showing that pre-training general-purpose
token embeddings before passing them into a task-specific
model is beneficial. The difference between training accuracy
and validation accuracy is at a minimum when using the
“FastText” encoding, i.e., there is only little overfitting. Since
we obtain the best overall accuracy the “FastText” encoding,
this encoding is the default in the remainder of the section.

Comparison of Transformation Encodings. Compar-
ing our compact encoding of transformations with a naive
one-hot encoding of transformations shows that the compact
encoding is beneficial. In particular, it enables the model to
predict otherwise missed speedups. We attribute this result
to the fact that the dense encoding makes it easier for the
model to generalize across similar transformations, as those
are encoded into similar vectors.

Comparison of Neural Architectures. We compare our
default CNN-based neural architecture to a recurrent neural
network with two layers of gated recurrent units and a size
similar to the CNN architecture. The comparison shows the
CNN model to be clearly more effective, in particular in
predicting speedups.

4.3 Effectiveness of Top-k Predictions per Loop

4.3.1 Metrics. To better understand how effective
LoopLearner is for individual loops, we evaluate the
effectiveness of those k transformations per loop that
LoopLearner predicts to have the highest speedups. Let L
be the set of all the loops, let L* C L be the subset of the
loops for which there exists at least one transformation that
produces a speedup, let P((,l) be the set of transformations
that can be applied to the loop I € L ordered by the predicted
performance from highest to lowest, let P((,l) (k) c P((Jl) be
the first k transformations in this set, let P((,ls (k) C Pgl)(k)
be the subset of transformations that are predicted to be
advantageous, and let Ly, C L be the subset of the loops for
which P((,ls)(l) # @. Then, to measure the top-k effectiveness
of our model we calculate:

e Total accuracy (%) is the percentage of loops I € L for
which at least one of the predictions for transformations in
P((,l)(k) is correct.

e Speedup recall (%) is the percentage of loops | € L*
for which at least one transformation in P((,ls)(k) produces a
speedup.

16

Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel

Table 3. Top-1, top-3 and top-5 accuracy of the network on
the validation set and the corresponding values for precision,
recall, and the mean speedup achieved in both static and
dynamic mode of execution.

Top | Total Speedup
k | Acc. (%) | Recall (%) Precision (%) | Static Dynamic
1 64.91 39.46 73.05 1.144x 1.235x
3 79.95 40.61 75.18 N/A 1.285x
5 83.38 41.00 75.89 N/A 1.290x

o Speedup precision (%) is the percentage of loops I € L,

for which at least one transformation in Pgls)(k) produces a
speedup.

4.3.2 Results. Table 3 shows the results (the last two
columns are described later). We find that the approach
achieves an accuracy of 65% when considering only the
top-most prediction for a loop, and of 83% within the top-5
predictions. The precision of speedups ranges between 73%
and 76% percent, i.e., when the model predicts a speedup,
then the code indeed performs faster in most cases. The
reason why the validation accuracy for top-1 predictions is
lower than the overall accuracy is that the distribution of
the numbers of possible transformations across the loops
is non-uniform. Some loops have a much higher number of
valid transformations than others, and for some loops the
top-1 prediction is more likely to be accurate than for others.

4.4 Speedups Achieved due to LoopLearner

4.4.1 Metrics. We evaluate the speedups obtained by ap-
plying the transformations suggested by LoopLearner in
both the static and the dynamic usage scenario (Section 3.3).
The speedups in the static scenario show the performance
improvement that can be immediately achieved when apply-
ing LoopLearner’s top suggested transformations, while the
dynamic scenario shows the potential speedup attainable
when validating LoopLearner’s predictions. We compute the
following two metrics:

e Speedup geometric mean (static) is defined only for
k = 1 and is the geometric mean of speedups across all loops
I € Ly, achieved when applying transformation Pgls)(l).

o Speedup geometric mean (dynamic) is the geometric
mean of speedups across all loops I € L, achieved when
applying the transformation with the best performance out
of PL(,IS) (k), or 1.0 if none of the top-k transformations results
in speedup.

4.4.2 Results. The last two columns of Table 3 shows the
speedups for both scenarios. We find that LoopLearner en-
ables significant speedups in both cases, with a 1.14x speedup
when simply using the top-1 prediction, and an 1.29x speedup
when choosing the best from the top-5 predictions. Because
in the dynamic scenario, the transformed loops are executed

Learning to Make Compiler Optimizations More Effective

Table 4. Time requirements of the different phases of our
approach.

Approach phase Time (CPU) | Time (GPU)
Learning embeddings 20 seconds | N/A
Training (1 epoch) N/A 60 seconds
Evaluation (single pass) N/A 20 seconds
Full training (300 epochs) N/A 6.6 hours
Evaluating 1 transformation 13.0 ms 1.6 ms
Evaluating 100 transformations | 13.5 ms 1.6 ms
Evaluating 1,000 transformations | 15.9 ms 1.7 ms

to measure their performance, the mean speedup is guaran-
teed to be at least as high as in the static scenario.

4.5 Efficiency of LoopLearner

We summarize the execution time for different phases of our
approach when running on either CPU or GPU in Table 4.
Before training our model we learn FastText embeddings,
which takes about 20 seconds on our dataset using 32 worker
threads. By far the most computationally demanding part
of our approach is training the neural network, which takes
around 6.6 hours to complete. However, we believe this time
can be brought down substantially by using higher batch
sizes along with more memory-efficient implementations of
the DenseNet architecture. Moreover, the training step, de-
spite being the most time-consuming, is only performed once
and afterwards the resulting model is ready to be deployed.

Because a high number of transformations can be applied
to a given loop, our model must be executed many times
before it is possible to decide which transformation is the
most beneficial. During prediction, the most computationally
intensive part is the feature extractor, which processes the
token sequences of a loop. Fortunately, it is sufficient to run
the feature extractor for any given loop only once. Then, the
fully connected layer can be used to evaluate many possible
transformations in a batch. As can be observed in Table 4, it
takes less than 20 milliseconds to evaluate 1,000 transforma-
tions for a single loop on a CPU and less than 2 milliseconds
for the same task on a GPU. We believe that these results
show that it is practical to implement LoopLearner as an
automated pre-processing step before giving code to the
compiler.

4.6 Comparison with Exhaustive Search

An alternative to querying LoopLearner for transformations
that are likely to improve the performance of a loop is exhaus-
tive search through all possible sequences of transformations.
By measuring the performance impact of each sequence of
transformations, exhaustive search is guaranteed to always
find the best-performing representation of a loop. However,
it is very time-consuming, since repeat executions of differ-
ent variants of a loop are required. The following explores

17

MAPS °21, June 21, 2021, Virtual, Canada

the trade-off between time spent on finding beneficial trans-
formations and time saved during the loop executions.

Time to Find Beneficial Transformations. It takes
about 10 hours to exhaustively measure the runtime of all
mutations in our dataset. This time is based on executions of
individual loops extracted from their original program [12],
and it excludes the time required for extracting the loops. In
contrast, predicting the speedup of transformations across all
loops using our model takes less than 2 seconds. LoopLearner
hence reduces the time taken to select a suitable transforma-
tion by several orders of magnitude.

Time Savings Due to Optimized Loops. We compare
LoopLearner and exhaustive search w.r.t. the speedup ob-
tained across all loops for which the respective approach
suggests applying a transformation. For LoopLearner, those
are all loops for which at least one transformation is pre-
dicted to yield a speedup. For exhaustive search, those are all
loops that have at least one such transformation. As shown in
Table 3, LoopLearner’s static usage scenario yields a speedup
of 1.144x. In contrast, exhaustive search yields a speedup
of 1.286x. That is, following the top-most suggestion of the
model without validating its performance impact results in
lower but still relevant speedups. LoopLearner’s dynamic
usage scenario shows a different picture. By considering
the top-5 suggestions of the model, the obtained speedup of
1.290x even exceeds that of exhaustive search. The reason is
that exhaustive search also reveals various transformations
that yield very small speedups, i.e., transformations that are
less relevant in practice. Intuitively, the top-5, dynamic sce-
nario can be seen as an exhaustive search within a much
reduced space of only the five most promising transforma-
tions.

Overall, we conclude that LoopLearner provides a practi-
cal alternative to exhaustive search, allowing developers
or automated tools to quickly identify the most beneficial
loop optimizations. In particular, the dynamic mode identi-
fies many of those transformations that yield a significant
speedup, without paying the cost of exhaustively measuring
the performance impact of all transformations for all loops.

4.7 Influence of Speedup Threshold

So far in our evaluation we defined the speedup threshold
as being equal to 1. However, as mentioned earlier, this hy-
perparameter can be used to adjust the precision and recall
of the trained model. To show the effects of tuning this hy-
perparameter, we evaluate the speedup precision and recall
on the validation set as we increase the speedup threshold
from 1.0 to 1.5. Figure 3 shows that, predictably, increas-
ing the speedup threshold will result in higher precision of
speedup predictions but also reduce the recall percentage.
Lower value settings for this hyperparameter might be suit-
able for a more optimistic approach with high tolerance for

MAPS ’21, June 21, 2021, Virtual, Canada

speedup mispredictions. On the other hand, higher values
guarantee a lower number of mispredictions but are also
likely to disregard advantageous transformations producing
smaller speedups.

T —
& 750 T .

[

g — Recall
é S I R R Precision
2
& 254 \

1.0 1.1 1.2 13 14 15

Speedup threshold

Figure 3. The effect of the speedup threshold on the
validation-set speedup precision and recall.

5 Related Work

Since many compiler bugs are triggered by optimizations [6],
several techniques search for optimization-related compiler
bugs via differential testing [17, 31]. Barany [3] compare the
code generated by different compilers to find optimizations
performed by one but missed by another compiler. Similarly,
Nagai et al. [23, 24] propose testing the validity of arithmetic
optimizations using randomly generated programs. Instead
of searching for bugs in the implementation of compiler
optimizations, our work improves the effectiveness of opti-
mizations by tailoring loops to the optimization decisions
made by the compiler.

Superoptimization tries to find the best program among all
semantics-preserving variants of a given program [21] and
can, e.g., be addressed as a stochasitic search problem [27].
Bunel et al. [5] propose a learning-based approach to im-
prove superoptimization by predicting the distribution of
code transformations to sample from. Another search-based
approach for finding suitable optimizations is evolutionary
search, e.g., to tune the order of optimizations [7, 8], to de-
cide which optimizations to enable [13], or to apply random
code mutations that reduce energy consumption [28]. All
of the above approaches search the optimization space for
a specific program and pay the cost, e.g., for executing and
validating candidate programs, for every program. In con-
trast, LoopLearner learns a model once, which then predicts
code transformations suitable for the given program with-
out the need to execute or validate candidate programs. A
difference to the work by Cooper et al. [7], which also looks
for sequences of code transformations, is that their work
optimizes in which order to apply transformations, whereas
our work predicts whether applying any transformation will
be beneficial, and if yes, which sequence of transformations
to choose.

18

Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel

Monsifrot et al. [22] use decision trees to learn the behav-
ior of loop unrolling optimizations to decide which loop to
unroll. Stephenson and Amarasinghe [30] propose a super-
vised learning algorithm to predict unroll factors. Yuki et al.
[32] train a neural network to predict loop tiling sizes. Simon
et al. [29] automatically learn effective inlining heuristics us-
ing decision trees and static code features. Machine learning
has been also applied to predict an effective application order
of compiler optimizations [2, 11, 20, 25]. Park et al. [25] use
a graph-based intermediate representation to train a model
that predicts optimization sequences that will benefit a given
program. Martins et al. [20] propose a clustering approach
for grouping similar functions, reducing the search space
resulting from the combination of optimizations previously
suggested for the functions in each group. Ashouri et al. [2]
cluster compiler optimizations to predict the speedup of se-
quences of optimizations that belong to the same cluster. All
the above approaches differ from our work by tuning opti-
mization decisions made inside the compiler, whereas we
present a pre-processing step that makes optimizations more
efficient without changing the compiler itself. Another dif-
ference is that the above methods rely on manually designed
features.

Recent work by Cummins et al. [9, 10] also proposes a
deep neural network that learns optimization heuristics over
raw code, similar to our work. Their work focuses on heuris-
tics for two optimization problems: predicting the optimal
execution device and the thread coarsening factor. Our work
differs in at least two ways. First, LoopLearner learns effec-
tive transformation sequences from a much larger corpus
of transformations. Second, LoopLearner trains a convolu-
tional neural network, whereas Cummins et al. build upon a
recurrent neural network. Another technique optimizes the
memory layout of matrices to enable faster sparse matrix
multiplication [33]. While also being based on convolutional
neural networks, their approach takes a matrix as the input,
whereas LoopLearner reasons about the code to optimize.

6 Conclusion

LoopLearner is a novel technique for addressing the prob-
lem of compiler instability. Given the source code of a loop,
LoopLearner suggests a semantically invariant transforma-
tion that will likely allow the compiler to produce more
efficient code. Following its recommendations prior to com-
pilation results in an average speedup of 1.14x. Almost three
quarters (73%) of the suggested transformations yield posi-
tive speedups. Trying the top-3 recommendations and choos-
ing the best one raises the average speedup even to 1.29x.
We envision the approach to be used either as a tool to guide
programmers or as a pre-processor run before or as part of
the compiler. Different from most earlier work, our approach
leverages deep learning and does not require any manual
selection of source code features. In addition, we consider

Learning to Make Compiler Optimizations More Effective

a much larger set of transformations—3,000 combinations
of five common loop optimizations in our case. Our model
needs to be trained once per compiler and platform, an effort
that is likely to pay off in view of the typical lifetime of either
of the two.

7 Broader Impacts

In this section we will briefly go over intended, and unin-
tended, potentially malicious, uses of LoopLearner. Previ-
ously, in Section 3.3 we have discussed two possible usage
scenarios. The goal in either case is to speedup a user pro-
gram, and consequently reduce the costs associated with
larger runtimes for the user. A malicious intent would aim
for the opposite goal, namely increasing the runtime of
user programs and consequently incurring higher costs for
the user. To avoid this undesired outcome, a model used
by LoopLearner must come from a trusted source, and its
thorough evaluation must be carried out.

Acknowledgments

This work was supported by the Graduate School CE
within the Centre for Computational Engineering at Tech-
nische Universitat Darmstadt, the Hessian LOEWE initiative
within the Software-Factory 4.0 project, European Research
Council (ERC, grant agreement 851895), and the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) — Projects NHR4CES, ConcSys and Perf4]S.

References

[1] Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Dis-
tributed word representations for multilingual nlp. arXiv preprint
arXiv:1307.1662 (2013).
Amir H. Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano,
Sameer Kulkarni, and John Cavazos. 2017. MiCOMP: Mitigating the
Compiler Phase-Ordering Problem Using Optimization Sub-Sequences
and Machine Learning. ACM Trans. Archit. Code Optim. 14, 3, Article
29 (Sept. 2017), 28 pages. https://doi.org/10.1145/3124452
Gergd Barany. 2018. Finding Missed Compiler Optimizations by
Differential Testing. In Proceedings of the 27th International Con-
ference on Compiler Construction (Vienna, Austria) (CC 2018). As-
sociation for Computing Machinery, New York, NY, USA, 82-92.
https://doi.org/10.1145/3178372.3179521
Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018.
Neural Code Comprehension: A Learnable Representation of Code
Semantics. In Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolo Cesa-Bianchi, and
Roman Garnett (Eds.). 3589-3601. https://proceedings.neurips.cc/
paper/2018/hash/17c3433fecc21b57000debdf7ad5c930-Abstract.html
Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr,
and Pushmeet Kohli. 2017. Learning to superoptimize programs. In
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. https:
//openreview.net/forum?id=r1rz6U5Ig
[6] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang,
Lu Zhang, and Bing Xie. 2016. An Empirical Comparison of Compiler
Testing Techniques. In Proceedings of the 38th International Conference

19

MAPS °21, June 21, 2021, Virtual, Canada

on Software Engineering (Austin, Texas) (ICSE ’16). ACM, New York,
NY, USA, 180-190. https://doi.org/10.1145/2884781.2884878
Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999.
Optimizing for Reduced Code Space using Genetic Algorithms. In Pro-
ceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers,
and Tools for Embedded Systems (LCTES’99), Atlanta, Georgia, USA,
May 5, 1999. 1-9. https://doi.org/10.1145/314403.314414
Keith D. Cooper, Devika Subramanian, and Linda Torczon. 2002. Adap-
tive Optimizing Compilers for the 21st Century. The Journal of Super-
computing 23, 1 (2002), 7-22. https://doi.org/10.1023/A:1015729001611
Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
2017. End-to-End Deep Learning of Optimization Heuristics. In 26th
International Conference on Parallel Architectures and Compilation Tech-
niques, PACT 2017, Portland, OR, USA, September 9-13, 2017. 219-232.
https://doi.org/10.1109/PACT.2017.24
Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
2017. Synthesizing benchmarks for predictive modeling. In 2017
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). 86—-99. https://doi.org/10.1109/CG0.2017.7863731
Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew
Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha
Mendelson, Ayal Zaks, Eric Courtois, et al. 2011. Milepost gcc: Machine
learning enabled self-tuning compiler. International Journal of Parallel
Programming 39, 3 (2011), 296-327. https://doi.org/10.1007/s10766-
010-0161-2
Zhangxiaowen Gong, Zhi Chen, Justin Szaday, David Wong, Zehra
Sura, Neftali Watkinson, Saeed Maleki, David Padua, Alexander Vei-
denbaum, Alexandru Nicolau, and Josep Torrellas. 2018. An Empirical
Study of the Effect of Source-level Loop Transformations on Compiler
Stability. Proc. ACM Program. Lang. 2, OOPSLA, Article 126 (Oct. 2018),
29 pages. https://doi.org/10.1145/3276496
Kenneth Hoste and Lieven Eeckhout. 2008. Cole: compiler optimization
level exploration. In Sixth International Symposium on Code Generation
and Optimization (CGO 2008), April 5-9, 2008, Boston, MA, USA. 165-174.
https://doi.org/10.1145/1356058.1356080
Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. 2017. Densely Connected Convolutional Networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition.
2261-2269. https://doi.org/10.1109/CVPR.2017.243
Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze,
Hérve Jégou, and Tomas Mikolov. 2016. Fasttext. zip: Compressing
text classification models. arXiv preprint arXiv:1612.03651 (2016).
Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov.
2016. Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759 (2016).
Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Valida-
tion via Equivalence Modulo Inputs. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY,
USA, 216-226. https://doi.org/10.1145/2594291.2594334
[18] Jiwei Li and Dan Jurafsky. 2015. Do multi-sense embeddings im-
prove natural language understanding? arXiv preprint arXiv:1506.01070
(2015).
[19] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type:
Inferring JavaScript Function Types from Natural Language Infor-
mation. In 2019 [EEE/ACM 41st International Conference on Software
Engineering (ICSE). 304-315. https://doi.org/10.1109/ICSE.2019.00045
Luiz G. A. Martins, Ricardo Nobre, Jodo M. P. Cardoso, Alexandre C. B.
Delbem, and Eduardo Marques. 2016. Clustering-Based Selection for
the Exploration of Compiler Optimization Sequences. ACM Trans.
Archit. Code Optim. 13, 1, Article 8 (March 2016), 28 pages. https:
//doi.org/10.1145/2883614
Henry Massalin. 1987. Superoptimizer: a look at the smallest program.
In ACM SIGARCH Computer Architecture News, Vol. 15. IEEE Computer

[7

—

[8

—

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

https://doi.org/10.1145/3124452
https://doi.org/10.1145/3178372.3179521
https://proceedings.neurips.cc/paper/2018/hash/17c3433fecc21b57000debdf7ad5c930-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/17c3433fecc21b57000debdf7ad5c930-Abstract.html
https://openreview.net/forum?id=r1rz6U5lg
https://openreview.net/forum?id=r1rz6U5lg
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/314403.314414
https://doi.org/10.1023/A:1015729001611
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/CGO.2017.7863731
https://doi.org/10.1007/s10766-010-0161-2
https://doi.org/10.1007/s10766-010-0161-2
https://doi.org/10.1145/3276496
https://doi.org/10.1145/1356058.1356080
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1145/2883614
https://doi.org/10.1145/2883614

—

—

—

—

[t

MAPS ’21, June 21, 2021, Virtual, Canada

Society Press, 122-126. https://doi.org/10.1145/36206.36194

Antoine Monsifrot, Francois Bodin, and Rene Quiniou. 2002. A Ma-
chine Learning Approach to Automatic Production of Compiler Heuris-
tics. In Proceedings of the 10th International Conference on Artificial Intel-
ligence: Methodology, Systems, and Applications (AIMSA ’02). Springer-
Verlag, London, UK, UK, 41-50. http://dl.acm.org/citation.cfm?id=
646053.677574

Eriko Nagai, Hironobu Awazu, Nagisa Ishiura, and Naoya Takeda. 2019.
Random Testing of C Compilers Targeting Arithmetic Optimization.
(04 2019).

Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2014. Reinforcing
Random Testing of Arithmetic Optimization of C Compilers by Scaling
up Size and Number of Expressions. IPST Transactions on System LSI
Design Methodology 7 (2014), 91-100. https://doi.org/10.2197/ipsjtsldm.
791

Eunjung Park, John Cavazos, and Marco A. Alvarez. 2012. Using
Graph-based Program Characterization for Predictive Modeling. In
Proceedings of the Tenth International Symposium on Code Generation
and Optimization (San Jose, California) (CGO ’12). ACM, New York,
NY, USA, 196-206. https://doi.org/10.1145/2259016.2259042

Michael Pradel and Koushik Sen. 2018. DeepBugs: A learning approach
to name-based bug detection. PACMPL 2, OOPSLA (2018), 147:1-147:25.
https://doi.org/10.1145/3276517

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic su-
peroptimization. ACM SIGARCH Computer Architecture News 41, 1,
305-316. https://doi.org/10.1145/2490301.2451150

Eric M. Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest,
and Westley Weimer. 2014. Post-compiler software optimization for
reducing energy. In Architectural Support for Programming Languages

Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel

and Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA, March 1-5,
2014. 639-652. https://doi.org/10.1145/2541940.2541980

Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulka-
rni. 2013. Automatic Construction of Inlining Heuristics Using Ma-
chine Learning. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO) (CGO ’13).
IEEE Computer Society, Washington, DC, USA, 1-12. https://doi.org/
10.1109/CG0.2013.6495004

Mark Stephenson and Saman Amarasinghe. 2005. Predicting Un-
roll Factors Using Supervised Classification. In Proceedings of the In-
ternational Symposium on Code Generation and Optimization (CGO
’05). IEEE Computer Society, Washington, DC, USA, 123-134. https:
//doi.org/10.1109/CG0.2005.29

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding
and Understanding Bugs in C Compilers. In Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (San Jose, California, USA) (PLDI '11). ACM, New York,
NY, USA, 283-294. https://doi.org/10.1145/1993498.1993532
Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopad-
hye, Charles Anderson, Alexandre E. Eichenberger, and Kevin O’Brien.
2010. Automatic Creation of Tile Size Selection Models. In Proceedings
of the 8th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization (Toronto, Ontario, Canada) (CGO ’10). ACM,
New York, NY, USA, 190-199. https://doi.org/10.1145/1772954.1772982
Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. 2018. Bridging
the gap between deep learning and sparse matrix format selection. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2018, Vienna, Austria, February
24-28, 2018. 94-108. https://doi.org/10.1145/3178487.3178495

https://doi.org/10.1145/36206.36194
http://dl.acm.org/citation.cfm?id=646053.677574
http://dl.acm.org/citation.cfm?id=646053.677574
https://doi.org/10.2197/ipsjtsldm.7.91
https://doi.org/10.2197/ipsjtsldm.7.91
https://doi.org/10.1145/2259016.2259042
https://doi.org/10.1145/3276517
https://doi.org/10.1145/2490301.2451150
https://doi.org/10.1145/2541940.2541980
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1109/CGO.2005.29
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1772954.1772982
https://doi.org/10.1145/3178487.3178495

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Overview
	3.2 Interpreting Predictions
	3.3 Usage Scenarios
	3.4 Definition of the Learning Problem
	3.5 Preprocessing
	3.6 Encoding of Source Code
	3.7 Encoding of Code Transformations
	3.8 DNN Architecture
	3.9 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Accuracy of Predictions
	4.3 Effectiveness of Top-k Predictions per Loop
	4.4 Speedups Achieved due to LoopLearner
	4.5 Efficiency of LoopLearner
	4.6 Comparison with Exhaustive Search
	4.7 Influence of Speedup Threshold

	5 Related Work
	6 Conclusion
	7 Broader Impacts
	References

