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Abstract—The mean time between failures of upcoming
exascale systems is expected to be one hour or less. To be
able to successfully complete execution of applications in such
scenarios, several improved checkpoint/restart mechanisms
such as multi-level checkpointing are being developed. Today,
resource management systems handle job interruptions due to
node failures by restarting the affected job from a checkpoint
on a fresh set of nodes. This method, however, will add non-
negligible overhead and will not allow taking full advantage
of multi-level checkpointing in future systems. Alternatively,
some spare nodes can be allocated for each job so that only
processes that die on the failed nodes need to be restarted on
spare nodes. However, given the magnitude of the expected
failure rates, the number of spare nodes to be allocated for
each job would be high, causing significant resource wastage.
This work proposes a dynamic way handling node failures by
enabling on-the-fly replacement of failed nodes with healthy
ones. We propose a dynamic node replacement algorithm that
finds replacement nodes by utilizing the flexibility of moldable
and malleable jobs. Our evaluation with a simulator shows
that this approach can maintain high throughput even when a
system is experiencing frequent node failures, thereby making
it a perfect technique to complement multi-level checkpointing.

I. INTRODUCTION

As we move into the exascale era, fault tolerance has
been conceded as the most important challenge, owing to the
high failure rates that exascale systems are expected to have.
The mean time between failures (MTBF) is expected to be
less than an hour for an exascale system. Although check-
point/restart is a popular technique in petascale systems,
existing methods cannot be directly transferred to exascale
systems.

In current practice, a running application is check-pointed
on a regular basis. Checkpointing is initiated either by the
application itself or the batch system. When the job is
affected by node failure, batch systems cancel the job and
restart the job from the latest checkpoint on a fresh alloca-
tion of nodes. Checkpoints are usually made to disk-based
storage and are therefore time consuming. Applications that
need 30 minutes per checkpoint are not uncommon. If
the checkpoint time is close to the MTBF, then most of
the time is spent checkpointing and restarting with little
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application progress. This also lengthens job execution and
turnaround time, which affects the overall throughput and
availability of the system. An effective way to reduce the
checkpoint time is in-memory checkpointing [1] and multi-
level checkpointing such as FTI [2] and SCR [3]. Multi-
level checkpointing involves combining different storage
technologies pertaining to multiple levels of the storage hier-
archy to store a checkpoint. The first few levels of storage are
in-memory and remote-memory storage, while the last level
is the file system. Despite the reduced checkpoint/restart
time facilitated by this approach, the resource management
limitations of current batch systems add other significant
overheads.

Canceling and restarting a job when it is affected by
node failure introduces additional overhead. Even if the
new allocation of nodes consists of a subset of the nodes
previously used by the job (before failure), the processes
and the data must be inserted afresh into the memory. Thus,
the advantage of multi-level checkpointing is reduced. One
way of circumventing this problem is to allocate dedicated
spare nodes for each job, beyond what is actually required
by the application as shown in Figure 1(a). In the event of a
node failure, these spare nodes can be put to use immediately
without having to resubmit the job. The application can then
be restarted using the data from in-memory checkpoints.
However, this approach requires a relatively large number
of spare nodes to stay prepared for faults. This leads to a
significant amount of nodes to remain unused and results
in poor system utilization and throughput. Furthermore, a
seemingly sufficient number of spare nodes allocated for
a job may still turn out to be inadequate, as the pattern
of faults may drastically vary. When no spare nodes are
available, the job has to be cancelled and restarted afresh.
Hence, current resource management mechanisms cannot be
effectively used for fault tolerance at exascale.

In this work, we propose a dynamic node-replacement
strategy that enables on-the-fly replacement of failed nodes
with other healthy nodes. More precisely, we propose a
dynamic node replacement algorithm that is deployed at
the central scheduler and triggered at the event of a node
failure. The algorithm finds nodes for replacement from
various sources such as idle nodes and nodes obtainable
from malleable and moldable jobs. We evaluate the proposed
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(a) Static allocation: failed nodes replaced by statically
allocated spare nodes
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(b) Dynamic allocation: failed nodes dynamically replaced by nodes
from a shared pool of spare nodes

Figure 1: Static and dynamic allocation of spare nodes in
the event of node failure.

technique with a discrete event simulator and the results
show that it can maintain high throughput even under high
failure rates.

In principle, today’s resource management systems can be
extended with some software development effort to enable
on-the-fly node replacement from a pool of spare nodes. This
will already provide benefits in improving resource avail-
ability and utilization. For example, Rezaei and Mueller [4]
have inferred that a dynamic pool of nodes can reduce the
required number of spare nodes by an order of magnitude
as compared to attaching spare nodes to each job. However,
the technique proposed in this paper goes one step further
and takes advantage of the dynamic nature of jobs to provide
fast node replacements and improve throughput.

As defined by Feitelson and Rudolph [5], jobs can be
classified in four categories based on their flexibility. The
first type is the rigid job, which requires a fixed number
of processors throughout its execution. The second type is
called the moldable job, whose resource set can be molded or
modified by the batch system before starting the job (e.g.,
to effectively fit alongside other rigid jobs). Once started,
its resource set cannot be changed anymore. The third type
is called the evolving job, which requests expansion or
shrinkage of its resource allocation during job execution.
The fourth class of jobs is called the malleable job. In
contrast to evolving jobs, the expansion and shrinkage of the
resources belonging to a malleable job are initiated by the
batch system. The application adapts itself to the changing
resource set. While rigid jobs are most common in today’s
HPC environments, the other job types are slowly becoming
more visible since many programming models such as
MPI, OpenMP, Charm++ and OmpSs are starting to feature
dynamic runtime systems. We have earlier demonstrated
how to create and schedule malleable and evolving jobs
using Charm++ and MPI, respectively [6], [7]. Similarly,

how malleable jobs can be created using MPI has been
demonstrated by Utrera et al. [8] and El Maghraoui et.
al. [9]. Moldable and malleable jobs can already be seen in
cloud environments. Therefore, as dynamic usage scenarios
begin to emerge in HPC environments, it is important to both
effectively manage them as well as exploit their flexibility.
Our proposed solution proficiently uses the adaptability of
these job types to enable fast replacements. A high level
illustration is shown in Figure 1(b). The main advantages of
our solution are:

1) No resubmission overhead: Instead of resubmitting
and restarting a job, it can be paused until failed nodes
are replaced.

2) More efficient use of resources: Avoids resource
wastage at the expense of a user’s compute-time
budget by eliminating the need for allocating spare
nodes for each job.

3) Less full job restarts required: Under static alloca-
tion, the job has to be restarted completely after every
node failure when there are no statically allocated
spare nodes available. With dynamic node replace-
ment, a partial restart of a job could be sufficient,
thereby reducing the time taken for bringing the ap-
plication back to the running state.

4) Better use of in-memory checkpoints and reduced
frequency of disked checkpoint/restart: Single-node
and multi-node failures (up to a certain number limited
by the checkpointing method) can be recovered with
in-memory checkpoints.

Thus, dynamic node replacement is an important aspect
for fast application recovery in current and future systems.
The focus of this work is restricted to the functionality of
the batch system and we show that proposed method can
maintain high throughput even under high failure rates. The
remainder of this paper is organized as follows: Section II
discusses other related work. Section III details the dynamic
node replacement algorithm, after which Section IV de-
scribes the implementation and evaluation setup. Section V
provides a detailed discussion of the results. Section VI
concludes the paper.

II. RELATED WORK

Although fault tolerance and resilience have been an
active area of research for a long time, they have gained
practical momentum in recent years as HPC progresses to
exascale. Exascale systems are predicted to have high failure
rates, which is motivating the development of many methods
for enabling a robust and reliable cluster environment.

In a broad perspective, failures can be categorized into
two types: software and hardware failures. Software failures
include the sudden death of important middleware such
as the central batch system, control daemons on nodes,
and runtimes and libraries used by the application. Batch
systems typically write cluster and job state information



to file systems. This includes running and queued jobs,
resources currently used by jobs, and future reservations and
ensures that a batch system can be restarted without losing
the information on the state of the jobs.

Tolerance to hardware failures involves multiple aspects:
fault detection, resource monitoring, and application recov-
ery. Current production batch systems are already equipped
with effective tools for resource monitoring and fault de-
tection. These tools are also constantly improved for faster
detection and low overhead monitoring. However, applica-
tion recovery is a challenging aspect. The most popular ap-
proach to application recovery is through checkpoint/restart.
The application is check-pointed regularly on disk storage
and restarted from the latest checkpoint in the event it is
affected by hardware failure. Some of the commonly used
checkpoint/restart frameworks include BLCR [10], FTI [2]
and SCR [3]. Since current batch systems only support static
allocations, the saved job is first removed from the existing
allocation and restarted on a fresh allocation. Batch systems
such as Platform LSF [11], OAR [12], Moab HPC Suite [13],
and HTCondor [14] follow this method. Also, since most
batch systems do not support job types other than rigid
jobs, failed jobs often have to wait a considerable amount of
time before a fresh allocation can be provided. The SLURM
resource manager contains the prototypical implementation
of a node-replacement facility. However, since it does not
support malleable or evolving jobs, the waiting time for node
replacement is not improved compared to providing a fresh
allocation.

Research in fault tolerance and resiliency mostly fo-
cused on improved application recovery techniques such as
enhanced checkpoint/restart methods [15], [2], transparent
and proactive process migration [16], [17], process replica-
tion [18], [19] and algorithm-based fault tolerance [20], [21].
Batch systems are usually coupled with checkpoint/restart
frameworks and tools that perform process replication and
migration to ensure transparent recovery [22] [23]. In this
paper, we explore a new dimension on fault tolerance
through dynamic node replacement.

III. DYNAMIC NODE-REPLACEMENT ALGORITHM

The node-replacement algorithm is designed to be a
supplement to a main job scheduling algorithm, which we
call the base scheduling algorithm. The node-replacement
algorithm is invoked only in the event of node failure. Any
scheduling algorithm can be used as the base scheduling
algorithm. However, it is assumed that the base scheduling
algorithm is also capable of scheduling moldable and mal-
leable jobs.

As an example, we use as base scheduling algorithm
a combination of FCFS with backfilling, DBES [6] for
scheduling malleable jobs, and Supercomputer AppLeS
(SA) [24] for scheduling moldable jobs. The DBES algo-
rithm schedules malleable jobs first with their minimum set

of required resources and later expands them with available
idle resources. It consists of a two stage expansion process.
In the the first stage, dependencies among all current and
future job reservations are computed and those malleable
jobs that are likely to allow queued jobs to be started earlier
are expanded. In the second stage, remaining idle resources
are equally distributed among the running malleable jobs.
More information about the algorithm has been described
by Prabhakaran et al. [6]. The SA algorithm simulates the
various configurations possible for each job submission and
estimates the turnaround time for each job using a resource
allocation list and a submit-time greedy strategy based on the
current system state. The scheduler then allocates processors
to jobs that are expected to deliver the least turnaround
time. Note that DBES and SA are selected for demonstration
purposes only. The node-replacement algorithm is agnostic
to the choice of base scheduling algorithm and therefore
any moldable/malleable job scheduling algorithms could
be used instead. The node-replacement algorithm’s only
responsibility is to assign replacement nodes to jobs affected
by failure. For the sake of simplicity, we make the following
assumptions:

Relation to checkpointing: Dynamic node-replacement
is only worth when the application is checkpointed reg-
ularly and can be continued from a checkpoint after the
failed nodes are replaced. However, an application can
have restrictions of its checkpointing intervals or may em-
ploy different checkpointing strategies such as in-memory
checkpointing and multi-level hierarchical checkpointing. In
general, our node-replacement algorithm can be combined
with any checkpoint/restart method available. Therefore,
when an application affected by failure gets an instant
node replacement, it may have to rollback to a previous
checkpoint and restart from there. This means the application
may have to recompute parts of what has already been
computed but is now lost because it was not checkpointed.
In such situations, the wall time limit of the job needs to
be extended accordingly to allow for those re-computations.
This time may vary between applications and the scheduler
may compute the extension by subtracting the time of the
last checkpoint from the time at which the failure occurred.
For simplicity, we assume perfect checkpointing of appli-
cations, that is, an application can restart from exactly the
same point at which it experienced the node failure. At the
same time, we claim that imperfect checkpointing could be
handled in principle, while emerging technologies such as
non-volatile memory are expected to lower the degree of
imperfection as time progresses.

Checkpointing different job types: As practiced today,
we assume that rigid jobs can only be restarted from a
checkpoint with the same total number of processes present
at the point of the last checkpoint. That is, if a rigid job
using n processes was checkpointed at a certain point in
time, it can be restarted from that checkpoint only when



it is possible to run it again with n processes. The same
applies to moldable jobs, as by definition a moldable job
becomes rigid after it starts executing with a given number
of processes. However, the only exception are malleable
jobs. They can be checkpointed and restarted with different
number of processes, given their malleable nature. For
example, Charm++ applications can behave in this manner
using in-memory checkpointing scheme.

Replacement waiting period: When a job affected by
node failure has to go through a waiting period until nodes
are replaced caused by the scheduler, the job’s wall time
limit is extended by this waiting time.

When the node-replacement algorithm is invoked, it can-
cels all job reservations made for the future and treats the
affected jobs with highest priority. The scheduler collects
the list of jobs that are affected by failure and attempts to
replace the failed nodes for each affected job through the
following options, in the order of presentation.

1) Local shrink
2) Use of idle processors
3) Remote shrink
4) Restarting moldable jobs
5) Waiting for processors to be come idle
1) Local shrink: The first option is considered only for

malleable jobs, wherein the scheduler attempts to shrink the
job and continue execution by removing the failed nodes
out of the job’s allocation. This can be successful only if
at least the minimum number of nodes to execute the job
remain allocated to it after it has been shrunk. This avoids
replacement while maintaining the conditions requested dur-
ing the malleable job’s submission, and therefore is a faster
solution. The base scheduling algorithm can later expand the
job again.

2) Use of idle processors: When the first option cannot
be applied, the scheduler attempts to replace the failed nodes
with idle ones as the second option. Idle resources may be
found from the cluster’s regular partition or a spare pool of
nodes as described in Section I, with priority given to the
spare pool.

3) Remote shrink: When the first two options are unsuc-
cessful, as the third option the scheduler considers replac-
ing failed nodes with healthy nodes obtained by shrinking
running malleable jobs. Malleable jobs that have been pre-
viously expanded with additional nodes are considered for
this purpose. Note that the algorithm can be configured to
prioritize certain malleable jobs over others when selecting
the malleable jobs to be shrunk. This can be based on
simple algorithms to sort running malleable jobs such as
earliest expanded first, latest expanded first, and frequency
of resource expansion/shrink. It can also be configured with
more sophisticated methods to complement the malleability
decisions of the base scheduling algorithm. For example,
when DBES is used as the base malleable scheduling
algorithm, priority of jobs selected for shrinking follows the

order of malleable jobs expanded in the second stage of
DBES (where resources are equipartitioned among malleable
jobs) followed by malleable jobs expanded in the first stage
of DBES (where resources are distributed to malleable jobs
based on the dependencies in the reservation flow). This
helps to maintain the malleability decisions made by DBES
to improve the general throughput of the system. The jobs
shrunk during this step may later be expanded again by
the base scheduling algorithm if and when sufficient nodes
become available. Note that during this step of the node-
replacement algorithm, a combination of option 3 and option
2 is also considered.

4) Restarting moldable jobs: The fourth option considers
two special cases only encountered with moldable jobs. In
the first case, the affected job itself is a moldable job, which
can be restarted from the beginning with a valid lower
number of nodes – typically specified by the user during job
submission. During failure, the latest point in time at which
sufficient replacement nodes can be availed for the affected
job can be determined using the job wall-time information.
Depending on this waiting time and the runtime estimates
of the moldable job’s request alternatives, restarting the
moldable job with a lower number of nodes can lead to
an earlier time of completion than waiting for replacement.
Figure 2 exemplifies this scenario where a moldable job A is
affected by a node failure. The algorithm restarts the affected
moldable job on a reduced set of nodes rather than waiting
for job B to terminate, leading to an earlier completion time.

However, this approach may not yield the best result in
certain situations. For example, if the affected moldable
job has almost reached its completion, although restarting
the job on a lower number of nodes may provide a better
throughput than waiting for a replacement, it drastically
increases the turnaround time of the job. Therefore, for
such scenarios and for scenarios where the affected job is
not a moldable job, the second case is considered, which
attempts to restart other running moldable jobs with a lower
number of nodes in order to free up nodes for replacement.
This is illustrated in Figure 3. Job A is affected by node
failure when it has almost reached the wall time. However,
its waiting time for replacement is long in contrast to the
extra time which job B, which just started, would need if it
was restarted on a reduced set of processors. The algorithm
therefore decides to restart job B. Thus, the problem here
is to determine the set of moldable jobs that must be
restarted to serve the recovery needs of the affected job while
minimizing the cost to free enough nodes. This is formally
defined as follows. We define a variable xj,c for every job
j ∈ J and their allowed job sizes c ∈ Cj such that

xj,c =

{
1 if job j should restart on c processors
0 otherwise.

(1)

The cost of restarting job j on c processors in terms of the
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(b) The algorithm decides to restart job
A on a smaller resource set, which leads
to a completion time that is earlier than
if it had waited for job B to terminate.

Figure 2: An example for the local restart of a moldable job.

delay in the completion of the job is given by:

rj,c = xj,c(ej(c)− s̄j), (2)

where ej(c) gives the completion time of job j when
restarted instantly on c processors and s̄j is the guarantee
given by the scheduler for the completion time of job j when
it was started for the very first time. Since the main aim is
to minimize the delay in completion time for every job, this
definition prevents the same job being considered multiple
times for restart. When the current job size is aj for every
job j ∈ J and the number of processors needed for the failed
job to recover is d, the values for xj,c can be obtained by
solving the following integer programming problem:

min
xj,c

∑
j∈J

∑
c∈Cj

xj,c(ej(c)− s̄j) (3)

such that
∑
j∈J

∑
c∈Cj

xj,c(aj − c) ≥ d

where
∑
c∈Cj

xj,c ≤ 1 ∀j ∈ J

and xj,c ∈ {0, 1} ∀j ∈ J, c ∈ Cj

Note that J consists of only all running moldable jobs
including the affected job if it is moldable. Also, Cj does
not have to include aj for every j ∈ J . Job j is not restarted
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(b) The algorithm decides to restart job
B on a smaller resource set as its delay
in completion time is smaller than if job
A had waited for job B to terminate.

Figure 3: An example for restarting a remote moldable job.

when xj,c is zero for every c ∈ Cj . The integer programming
problem can then be solved using, for example, a branch-
and-bound algorithm. This provides a solution xj,c for every
job. The dynamic node-replacement algorithm considers
restarting jobs for which xj,c = 1 when the delay in
completion time of the failed job is less than the time that it
would spend waiting for processors to be released by normal
termination of other running jobs.

5) Waiting for processors to become idle: Finally, if all of
these options are not able to provide an efficient replacement
to the affected job, the fifth and the last option is considered,
which is waiting for the completion of other jobs to acquire
resources. In this case, the affected job is put at the top of
the queue of pending jobs. As soon as nodes are available,
they are assigned to the affected job.

IV. IMPLEMENTATION AND EVALUATION SETUP

In this section, we present the evaluation environment
used to study the dynamic node-replacement algorithm.

A. Implementation

The dynamic node-replacement algorithm and all base job
scheduling algorithms used were implemented and evalu-
ated on the custom discrete-event simulator based on the
SimJava2.0 package [25]. In a discrete-event simulation,
the state of a system changes at discrete points in time
according to the occurrence of certain events. In this context,



the events that change the state of our system are: job
arrival, job completion, node failure, and node recovery. A
set of variables defines the state of the system at a given
point in time. The variables of importance to this context
are the job queue, the list of jobs currently in execution,
and the list of jobs that are affected by node failure. Each
event is processed with the respective action after updating
the state of the system. For example, a node failure event
moves all jobs running on a failed node to the list of
affected jobs. This is followed by a call to the dynamic
node-replacement algorithm to attend to the affected jobs.
The base resource mapping and backfilling algorithm is
used from the implementation provided by the GridSim
toolkit [26]. For solving the linear programming problem
defined in the node-replacement algorithm, we use the GNU
Linear Programming Kit [27].

B. Workload model

Although there are many real workloads and workload
models publicly available [28], they only reflect rigid jobs.
We require workload models that already include or allow
the integration of moldable and malleable jobs. Therefore,
we chose two models for rigid and moldable jobs proposed
by Cirne [24]. Malleable jobs were generated by extending
the moldable job model. For the purpose of evaluation, we
generate workloads of the required size and type composi-
tion from the SDSC workload trace [24] for a given system
size. The jobs in the workload are characterized by the job
and speedup models explained below.

1) Speedup model: Since our methods use moldable and
malleable jobs, it was essential to use a speedup model
to capture the flexibility of the jobs according to their
types. Downey proposed a speedup model that constructs
a hypothetical parallelism profile to reflect the behavior of
common parallel applications [29]. This was used to create
the speedup profiles of all rigid, moldable, and malleable
jobs.

2) Rigid job model: Downey observed that the distri-
bution of job sizes (i.e., number of processors used by a
job) and the estimated runtime follows approximately a log-
uniform distribution [29], which was later confirmed by
Cirne [24]. The cumulative distribution function of a log-
uniform distribution is given by:

CDF(x) = χ log2(x) + ρ, (4)

where χ and ρ are the slope and the intercept of the line in
the log space. The summary of the parameters describing a
rigid job is shown in Table I

3) Moldable job model: A moldable job consists of a
set of a rigid requests with each request having a job size
n, a runtime T (n), and a runtime estimate or wall time
Te(n). For each job size, the speedup model can be used to
determine the job runtime. To determine the maximum size

Table I: Summary of parameters for the rigid job model [24].

Characteristic Model Parameters
Job size Log-uniform

distribution
χ = 0.12, ρ = 0.20

Power-of-2 job sizes Probability p p = 0.75
Estimated runtime Log-uniform

distribution
χ = 0.10, ρ =
−0.75

Table II: Summary of parameters for the moldable job
model [24].

Characteristic Model Parameters
Minimum job size Log-uniform

distribution
χ = 0.06920, ρ =
0.6279

Number of user re-
quests

Log-uniform
distribution

χ = 0.1918, ρ =
0.1876

Average parallelism Joint log-uniform
distribution

ϕ = 0.009548, γ =
−0.01877
η = 0.07468, ρ =
−0.009198

cmax of a job, Downey’s model was used and is given by:

cmax =

{
2A− 1 if σ ≤ 1

A+Aσ − σ if σ ≥ 1.
(5)

where A is the average parallelism and σ is the coefficient
of variance in parallelism. The speedup model is applied
to each using the relationship between cmin and A, which
follows a joint log-uniform distribution given by:

CDF(x, y) = ϕ·log2(x)·log2(y)+γ·log2(x)+η·log2(y)+ρ.
(6)

Table II shows the specific values of the parameters used in
our evaluation.

4) Malleable job model: Malleable jobs are submitted
with a range of processors within which the job is assumed
to be malleable. For describing these jobs, the same pa-
rameters of the moldable job model explained above are
used. Additionally, instead of allowing only a set of job
sizes within the minimum and the maximum job-size range,
a malleable job can accept all the sizes within that range.

C. Failure model

A failure model describes the occurrence of failures in a
supercomputer. This can be modeled by studying a variety
of failure traces that are publicly available [30]. A study
by Schroeder and Gibson [31] showed that it is difficult to
describe a system after the first year of installation using a
common probability distribution. The remaining years can
be described using a Weibull distribution. Schroeder and
Gibson observed that the mean time to repair can be well
described by a log-normal distribution. For the purpose of
evaluation, we set the MTBF of the system to 1 hour, which
has been estimated to be typical for an exascale system [32]
and the mean time to repair is about 2.8 hours, following
the above distributions.



Table III: Composition of workloads.

Workload name Job types
Rigid Moldable Malleable

Mixed workload 400 300 300
Moldable-rigid workload 500 500 -
Malleable-rigid workload 500 - 500

V. EXPERIMENTAL RESULTS

For the purpose of evaluation, we simulate a cluster
computer with a size of 125 nodes with 4 processors per
node, reaching a total of 500 processors. Three different
workloads, which are listed in Table III, are investigated.
As mentioned earlier, the base scheduling algorithm is a
FCFS scheduler with support for moldable jobs, malleable
jobs and backfilling. Moldable jobs are scheduled using the
SA scheduling algorithm. Malleable jobs are scheduled with
the algorithms DBES, Precedence to Running Applications
(PRA) and Precedence to Waiting Applications (PWA) in
separate experiments to draw a comparison. PRA and PWA
are malleable job scheduling algorithms proposed by Buis-
son et. al. [33]. PRA expands all running malleable jobs
whenever idle nodes are available in the system instead of
using them to start new jobs or perform backfilling. PWA
uses idle nodes to start new jobs rather than expanding
running malleable jobs. The nodes that still remain idle after
this step are used to expand malleable jobs. We reiterate
that the simulation assumes perfect checkpointing, as already
explained in Section III. The composition of workloads used
for evaluation is summarized in Table III.

A. Mixed workload

The mixed workload consists of 400 rigid jobs, 300
moldable jobs and 300 malleable jobs. The base scheduling
algorithm used for scheduling the workload includes FIFO
with conservative backfilling for rigid jobs and SA for mold-
able jobs. The malleable jobs were scheduled using PRA,
PWA, and DBES in separate experiments. Figure 4 shows
the makespan of the workload scheduled with the above
mentioned algorithms under different failure conditions. The
rigid scheduling strategy treats all jobs as rigid jobs with
FIFO and backfill scheduling.

In the absence of node failures, one would expect that
scheduling the workload with the awareness of malleable
and moldable jobs will result in a lower makespan than
scheduling all of them as rigid jobs. It can be noticed
that while this is true for PWA and DBES, PRA has a
larger makespan than even rigid scheduling. This is a result
of prioritizing the use of idle processors for expanding
malleable jobs instead of starting new ones. While expanding
a malleable job can improve its speedup, it may not always
deliver the best parallel efficiency. Thus the makespan in
this cases increases more than even that of rigid scheduling
as the execution of several malleable jobs had lower par-
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allel efficiency. Between PWA and DBES, DBES performs
negligibly better than PWA.

In the presence of failures and without using dynamic
node replacement, the makespan of all the scheduling strate-
gies increases as expected because of the regular node
failures. The makespan of the rigid scheduling strategy in
the presence of node failures shoots up substantially by
about 18% when compared to the makespan of the same
without node failures. On the other hand, the makespan of
PRA, PWA and DBES in the presence of node failures
shoot up only by about 6%, 11% and 5% compared to
their own makespan without node failures, respectively. This
is because of malleable and moldable jobs that can use
resources flexibly and cause less wastage of resources even
as failures occur. This shows that even when experiencing
a high failure rate, simply enabling moldable and malleable
job scheduling can bring about better system utilization and
throughput than rigid scheduling.

When the dynamic node replacement algorithm is used,
the makespan of adaptivity-aware scheduling strategies is
further reduced to stay close to that of the scenario without
node failures. Therefore, the dynamic node replacement al-
gorithm can immensely improve the scheduling performance
that sees a dip due to hardware failures.

Figure 5 shows the break down of the percentages of
the sources from which replacements were found when the
dynamic node replacement algorithm was used under PRA,
PWA, and DBES. We can observe that the majority of the
replacement nodes were found by shrinking other running
malleable jobs under all three strategies. This percentage
is considerably higher than the percentage of replacement
nodes found from idle ones. This is a result of enabling
malleability, which increases system utilization and leaves
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Figure 6: Time for completion of the malleable-rigid work-
load with various scheduling algorithms.
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Figure 7: Node replacement sources in the malleable-rigid
workload.

less nodes idle. The percentage of idle nodes used for
replacement is highest in PRA compared to PWA and DBES
because of the relatively low system utilization maintained
by PRA in comparison to PWA and DBES.

An important observation is the role of moldable jobs and
the local/remote restart of moldable jobs by the dynamic
node replacement algorithm. We can see from Figure 5 that
the percentage of moldable jobs restarted to find replace-
ments for handling a failure has been far less compared
to other replacement sources. Restarting a moldable job is
typically an expensive operation as the job has to start from
the beginning. Therefore, the lower the number of moldable
jobs restarted is, the better is the overall performance. How-
ever, this step in the dynamic node replacement algorithm
was also vital. It effectively reduced the number of jobs
that needed to be re-queued as a result of not having found
any replacement to zero in all three strategies. For example,
when the step for considering the restart of moldable jobs
was disabled in the dynamic node replacement algorithm
used with DBES as base, 8 jobs were re-queued out of the
220 jobs that were affected by failures. Thus, although its
contribution in finding replacements is lower compared to
other replacement sources, it plays an essential role. Also,
it has the potential to make a larger contribution in the
future as checkpoint/restart techniques mature as detailed
in Section V-C.

B. Malleable-rigid workload

The malleable-rigid workload consists of a total of 1000
jobs with 500 malleable jobs and 500 rigid jobs. The
makespans of this workload with the PRA, PWA and DBES
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Figure 9: Node replacement sources in the moldable-rigid
workload.

schedulers and various failure scenarios are shown in Fig-
ure 6. The corresponding sources of replacement are shown
in Figure 7. It can be observed that the results follow the
same trend as the mixed workload. Without the presence
of failures PRA has the longest makespan and DBES has
the shortest. Similar to the mixed workload, the presence
of node failures increase the makespan with all three base
scheduling algorithms. When the dynamic node replacement
algorithm is applied, the makespan is brought down close to
the original makespan without node failures.

However, the most important observation in this workload
is that the makespan with the DBES scheduling algorithm is
almost the same in all three cases: absence of node failures,
high node failure rate without dynamic node replacement,
and high node failure rate with dynamic node replacement.
This is because DBES performs an implicit dynamic node
replacement. When a job is affected by node failures and
no dynamic node replacement algorithm is present, the job
is put back into the idle/pending queue with the highest
priority. Therefore, in the next scheduling iteration, DBES
can already allocate resources for this job through its basic
scheduling mechanism. This is done by either providing idle
healthy nodes or by obtaining them from shrinking other
running malleable jobs. This is similar to the steps followed
by the dynamic node replacement algorithm.

C. Moldable-rigid workload

The moldable-rigid workload consists of 500 rigid and
moldable jobs each, totaling to 1000 jobs. As already



described, moldable jobs are scheduled using the SA al-
gorithm. Figure 8 shows the makespan of the workload
in the three failure scenarios: no failures, high failure rate
without dynamic node replacement, and high failure rate
with dynamic node replacement.

The moldable-rigid workload also exhibits the same per-
formance trend as the mixed and malleable-rigid workload.
The makespan of the workload when subjected to a high
node failure rate increases by about 11% compared to having
no hardware failures. However, with the dynamic node
replacement strategy, the makespan is only 2% greater than
that of the scenario without any failures. The split-up of
the sources of replacement when using the dynamic node
replacement algorithm is shown in Figure 9.

A high percentage (62%) of instant replacements came
from idle processors due to the low system utilization
(65%) obtained when scheduling this workload. However,
continued node failures did not allow instant replacements
all the time and some jobs had to wait until nodes were
released by the normal termination of other running jobs.
This constituted about 18% of the node replacements. Ap-
proximately 20% of instant replacements were provided
by restarting moldable jobs (step 4 of the dynamic node
replacement algorithm).

Thus, almost an equal percentage of replacements had
been provided by restarting moldable jobs and waiting for
node releases. The strategy of restarting moldable jobs alone
could not completely avoid the waiting. This is typical
because restarting moldable jobs is an expensive opera-
tion. Unlike malleable jobs that can seamlessly continue
execution after a shrink or an expand step, moldable jobs
have to be restarted from the beginning of the application.
The results of the execution performed before terminating
a moldable job cannot be used after restarting it with
a different number of processors. Therefore, this strategy
makes only a smaller contribution towards finding instant
node replacements as opposed to using malleable jobs or
idle resources for finding replacements.

However, this strategy can be expected to play a more
prominent role in the future as checkpoint/restart techniques
advance. Current disk-based checkpoint/restart techniques
are only able to restart a job with the same number of
processes from a checkpoint. On the other hand, restarting
jobs with a different number of processors from a check-
point is one of the important research directions in check-
point/restart techniques and is not far from being a reality.
Since moldability is easier to achieve than malleability, this
replacement strategy will be able to take advantage of the
improved checkpoint/restart methods and the larger number
of moldable jobs that may be present in future workloads.

VI. SUMMARY AND CONCLUSION

Although the computational demands of user applications
drive the effort to create exascale systems, high computa-

tional power at the cost of reliability is not desired by any
user. Given that exascale systems are predicted to have a
MTBF of one hour or less, achieving high resiliency is one
of the top goals in making exascale systems real. Until now,
applications could use the libraries for checkpoint/restart or
replication separately for fault tolerance. However, moving
forward, exascale systems call for an approach of tightly
coupling multiple middleware components to achieve re-
siliency.

To this end, this work proposes a dynamic node re-
placement algorithm which replaces failed nodes of a job
with healthy ones on-the-fly. The algorithm uses the unique
characteristics of all job types to find fast replacement nodes.
The algorithm is implemented as a supplemental algorithm
to a base scheduling algorithm and is triggered in the event
of node failures. Evaluation of the algorithm with GridSim
simulator shows that dynamic node replacement has a strong
potential to curb the throughput loss that inevitably occurs
when experiencing high failure rates.

The dynamic node replacement algorithm is a perfect
complement to the new multi-level checkpointing features
that are increasingly becoming popular. While this contri-
bution used a simulator to demonstrate the benefits of the
algorithm, it opens the scope for building a wide variety
of interfaces between checkpoint/restart frameworks and the
batch system to achieve functionality such as automatic
checkpointing and proactive migration. Also, the batch sys-
tem could use the checkpoint/restart framework to achieve
pseudo-malleability in applications if they can be restarted
from a checkpoint with a different number of processors.
Overall, the role of batch systems in future cluster environ-
ments will be key to making systems more robust.
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