
Brief Announcement: Meeting the Challenges of Parallelizing
Sequential Programs

Rohit Atre
Technische Universität Darmstadt

Darmstadt, Germany
atre@cs.tu-darmstadt.de

Ali Jannesari
University of California, Berkeley

Berkeley, USA
jannesari@berkeley.edu

Felix Wolf
Technische Universität Darmstadt

Darmstadt, Germany
wolf@cs.tu-darmstadt.de

ABSTRACT
Discovering which code sections in a sequential program can be
made to run in parallel is the �rst step in parallelizing it, and pro-
grammers routinely struggle in this step. Most of the current paral-
lelism discovery techniques focus on speci�c language constructs
while trying to identify such code sections. In contrast, we propose
to concentrate on the computations performed by a program. In
our approach, a program is treated as a collection of computations
communicating with one another using a number of variables. Each
computation is represented as a Computational Unit (CU). A CU
contains the inputs and outputs of a computation, and the three
phases of a computation: read, compute, and write. Based on the
notion of CU, We present a uni�ed framework to identify both loop
and task parallelism in sequential programs.

KEYWORDS
parallelism discovery; multicore architectures; static analysis; task
parallelism; pro�ling;

1 INTRODUCTION
Millions of legacy programs are awaiting their parallelization. Pro-
grammers are required to solve a lot of problems while trying to
parallelize a sequential program but ”Which code sections to run
in parallel?” is still one of the most di�cult questions that needs to
be answered �rst.

Until now, existing parallelism discovery techniques have been
built on top of data-dependence analysis, performed either stati-
cally [6, 17] or dynamically [9, 16]. �e idea of using data depen-
dences to discover parallelism is based on Bernstein’s conditions [4]:
Let Pi and Pj be two program sections. Ii and Oi are the sets of
input and output variables of Pi . Similarly, Ij and O j are the sets
of input and output variables of Pj . Pi and Pj can be executed in
parallel if

Ij ∩Oi = ∅,

Ii ∩O j = ∅,

Oi ∩O j = ∅.

To discover parallelism, existing techniques check for the depen-
dences that arise when one of these conditions is violated. However,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’17, July 24-26, 2017, Washington DC, USA
© 2017 Copyright held by the owner/author(s). 978-1-4503-4593-4/17/07.
DOI: 10.1145/3087556.3087592

these techniques do not strictly follow Bernstein’s conditions. �ey
do not necessarily distinguish between input and output variables
of a code section. As a result, they end up applying data dependence
analysis on all of the variables. �is makes identifying parallelism
unnecessarily complex, and it also leads to both false positives and
false negatives in identi�ed parallelism of a sequential program.

�is paper discusses an approach to identify both loop and task
parallelism in sequential programs following Bernstein’s conditions.
Our method treats a sequential program as a set of computations
that communicate with each other. A computation is represented
as a Computational Unit (CU). It contains three phases: read phase,
compute phase, and write phase. Input and output variables of a CU
are clearly distinguished and associated with the read phase and
the write phase, respectively. A CU is also created in such a way
that read phase is guaranteed to happen before write phase. Data
dependences among CUs are obtained using dynamic dependence
pro�ling. In the end, a sequential program is represented as a CU
graph, in which vertices are CUs, and edges are data dependences.

Our approach targets both loop and task parallelism. A loop can
easily be parallelized if there are no inter-iteration dependences
in it. Such loops are called DOALL loops [12]. Loops that contain
inter-iteration dependences and can still be parallelized are called
DOACROSS [12] loops. In case of task parallelism, there are two
di�erent kinds of tasks: Tasks that are instances of the same code
section but process di�erent data (SPMD) [7], and tasks that execute
completely di�erent code sections performing unique computations
(MPMD) [18]. Following Bernstein’s conditions (BC) and with the
help of CU graph, all the above kinds of parallelism can be easily
identi�ed. In the end, our method produces parallelization oppor-
tunities in sequential programs. A CU (or a set of CUs) provides us
with the �exibility and versatility to create this framework. In it, a
CU (or a set of CUs) can be used as task, an iteration of a loop, a
stage in a pipeline, or other parallel constructs.

We have evaluated our approach by comparing the paralleliza-
tion opportunities identi�ed by our approach with the existing
parallel versions. In addition, we also parallelized these opportuni-
ties as parallelizable but not parallelized in the parallel version of the
benchmark applications. Our experiments on Barcelona OpenMP
Tasks Suite (BOTS) [8], NAS parallel benchmarks [3], PARSEC
[5] benchmark suite, and Starbench parallel benchmark suite [1]
showed that all of the code sections identi�ed as parallelizable by
our approach are parallelized in existing parallel versions.

2 APPROACH
We �rstly introduce computational unit, which is the most impor-
tant concept in our method. �en CU graph, the graph we use to
represent a sequential program, is introduced.

SESSION 8 SPAA’17, July 24-26, 2017, Washington, DC, USA

363



2.1 Computational Unit
A computational unit is a collection of instructions following the
read-compute-write pa�ern: a set of variables is read by a collection
of instructions and is used to perform a computation, then the result
is wri�en back to another set of variables. �e two sets of variables
are called read set and write set, respectively. �ese two sets do not
necessarily have to be disjoint. Load instructions reading variables
in the read set form the read phase of the CU, and store instructions
writing variables in the write set form the write phase of the CU.

In practice, program tasks communicate with one another by
reading and writing variables that are global to them, and computa-
tions are performed locally. A CU is de�ned by read-compute-write
pa�ern for this reason. �is is also why we require the variables
in a CU’s read set and the write set to be global to the CU. �e
variables local to the CU are part of the compute phase of the CU
as they will not be used to communicate with other tasks during
parallelization. We perform variable scope analysis to distinguish
variables that are global to a code section. It is available in any
ordinary compiler. Global variables in the read set and the write set
do not have to be global to the whole program. �ey can be local to
an encapsulating code section, but global to the target code section.

2.1.1 Cautious property. A code section is considered to be a CU
only if it is cautious. Cautious property [15] was previously de�ned
for operators in unordered algorithms. Ot states that an operator is
said to be cautious if it reads all the elements of its neighbourhood
before it modi�es any of them. By adapting it to the CU, we make
sure that a code section is cautious if every variable in its read set
is read before it is wri�en in the write phase of the CU.

Cautious property guarantees the read-compute-write pa�ern of
the CU. It not only gives a clear way of separating read phase and
write phase, but also a�er parallelism discovery, it allows multiple
CUs to be executed speculatively without bu�ering updates or
making backup copies of modi�ed data. �is is possible because all
con�icts are detected during the read phase. Consequently, tasks
extracted based on CUs also do not have any special requirement
on runtime frameworks.

A computation may depend on data produced from other compu-
tations. To represent such dependences, we use a dynamic depen-
dence pro�ler DiscoPoP[13]. DiscoPoP pro�les detailed data depen-
dences, gathers control-�ow information, and identi�es hotspots
across the target program. We run the pro�ler multiple times using
representative inputs to overcome the input sensitivity of the dy-
namic dependence analysis. �en we merge the dependence results
obtained. �ese representative inputs are provided along with the
benchmarks and they are of varying size and complexity. Next, we
build a CU graph

2.2 CU Graph
A computation may depend on data produced from other compu-
tations. To represent such dependences, we use a dynamic depen-
dence pro�ler DiscoPoP[13]. DiscoPoP pro�les detailed data depen-
dences, gathers control-�ow information, and identi�es hotspots
across the target program. We run the pro�ler multiple times us-
ing representative inputs to overcome the input sensitivity of the
dynamic dependence analysis. �en we merge the dependence
results obtained. �ese representative inputs are provided along

with the benchmarks and they are of varying size and complexity.
Next, we build a CU graph, in which vertices are statically gener-
ated CUs and edges are dynamic data dependences. Hence, the CU
graph combines static and dynamic information to help us discover
parallelism. Data dependences in a CU graph are always among
instructions in read phases and write phases. Dependences that are
local to a CU are hidden because they do not prevent parallelism
among CUs according to Bernstein’s conditions. Moreover, since
the number of global variables to a code section is usually far less
than the number of local variables, a CU graph is much simpler than
the traditional instruction-based dependence graph. �is simpli�es
the parallelism discovery process. �e CU graph is then expanded
using runtime information to represent instances of tasks or loops,
if necessary.

2.3 Parallelism discovery
�ere are two kinds of parallelism we can identify: parallelism
among di�erent computations, and parallelism among di�erent
instances of the same computation. Parallelism among di�erent
computations can be easily identi�ed using CU graphs without
instantiating these computations.

On the other hand, identifying parallelism among di�erent in-
stances of the same computation requires some additional e�ort.
To discover such parallelism, a CU must be instantiated using real
inputs passed into the computation and real outputs it produces.
A CU graph consisting instantiated CUs is called an expanded CU
graph.

2.3.1 Task parallelism. Task parallelism is discovered based
on the following rules:

(1) A CU is instantiated into di�erent instances using their
real inputs and outputs with respect to the control �ow.
Two instances of the same computation can run in parallel
if they are independent in the expanded CU graph (SPMD
task parallelism).

(2) Two di�erent computations can run in parallel if their cor-
responding CUs are independent in the CU graph (MPMD
task parallelism).

Parallelism within a computation is not covered by our current
approach. However, such parallelism can be detected by further ap-
plying techniques that track def-use chains [2] on compute phases
of CUs. Nevertheless, in rare cases where a code section contains
plenty of lines of code and complex computation (which is unlikely
to be cautious), analyzing CUs built for it might provide opportuni-
ties to break the region down to smaller computations, leading to
parallelism that is similar to OpenMP sections [14].

2.3.2 Loop parallelism. Loop parallelism is discovered based
on the following rules:

• Iterations of a loop can run in parallel if for all CUs built for
the loop, there are no inter-iteration read-a�er-write (RAW)
dependences among the CUs or on a single CU (DOALL
parallelism).

• If there are inter-iteration dependences in the loop, the
loop may still be analyzed to check if it can be parallelized
by using techniques e.g. reduction, privatization, pipeline
etc. (DOACROSS parallelism).

SESSION 8 SPAA’17, July 24-26, 2017, Washington, DC, USA

364



DOALL parallelism: In case of DOALL loops, the iterations of
loop are independent of each other. �is means that the instances
of CUs are also independent and as a result they satisfy Bernstein’s
conditions. However, it is not necessary to analyze all the instances
of the CUs of a loop because loops have no parameters to be re-
placed, unlike function calls and their instances.

DOACROSS parallelism: It is possible to further analyze the
dependence distances of the inter-iteration RAW dependences to
discover DOACROSS [12] loops. A DOACROSS loop has inter-
iteration dependences, but the dependence distance should not
be as large as the distance between the �rst line of an iteration
and the last line of the previous iteration. In other words, the
�rst CU of the loop should not depend on the last CU of the loop.
�is raises the possibility that iterations of a DOACROSS loop can
overlap, thus containing parallelism. Based on our CU graph, if
the length of the longest dependence is smaller than the distance
from the last CU to the �rst CU, we can classify such loops as
candidates for DOACROSS parallelism. All the instances of CUs
are not independent of each other in DOACROSS loops as there are
inter-iteration dependences, unlike DOALL loops. But a subset of
CUs in an iteration can be independent of another subset of CUs in
the next iteration. Hence they satisfy Bernstein’s conditions and
can be run in parallel. Utilizing such parallelism is usually achieved
by applying the pipeline pa�ern [11] [10].

3 CONCLUSION
�is paper discusses an approach for discovery of parallelism by
identifying code sections called computational units (CU) in sequen-
tial programs. A CU follows a read-compute-write pa�ern. CUs are
detected statically from the source code using the cautious prop-
erty. A CU graph is then created using the CUs and the dynamic
dependences. �is serves as the basis for parallelism detection.
Bernstein’s conditions are used to identify the tasks which can run
in parallel to each other from a CU graph or an expanded CU graph

REFERENCES
[1] Michael Andersch, Ben Juurlink, and Chi Ching Chi. 2011. A Benchmark Suite

for Evaluating Parallel Programming Models. In Proceedings 24th Workshop on
Parallel Systems and Algorithms (PARS ’11). 7–17.

[2] Rohit Atre, Ali Jannesari, and Felix Wolf. 2015. �e Basic Building Blocks
of Parallel Tasks. In Proceedings of the 2015 International Workshop on Code

Optimisation for Multi and Many Cores (COSMIC ’15). ACM, New York, NY, USA,
Article 3, 11 pages.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. 1991. �e NAS parallel benchmarks. �e International Journal of
Supercomputer Applications 5, 3 (1991), 63–73.

[4] Arthur Bernstein. 1966. {Analysis of programs for parallel processing}. IEEE
Transactions on Electronic Computers 15, 5 (1966), 757–763.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. �e
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’08). ACM, New York, NY, USA, 72–81. DOI:
h�p://dx.doi.org/10.1145/1454115.1454128

[6] Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. 1989. Automatic
generation of nested, fork-join parallelism. �e Journal of Supercomputing 3, 2
(1989), 71–88. DOI:h�p://dx.doi.org/10.1007/BF00129843

[7] Frederica Darema. 2001. �e spmd model: Past, present and future. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface. Springer,
1–1.

[8] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard
Ayguade. 2009. Barcelona openmp tasks suite: A set of benchmarks targeting the
exploitation of task parallelism in openmp. In Parallel Processing, 2009. ICPP’09.
International Conference on. IEEE, 124–131.

[9] Jialu Huang, �omas B Jablin, Stephen R Beard, Nick P Johnson, and David I
August. 2013. Automatically exploiting cross-invocation parallelism using run-
time information. In Code Generation and Optimization (CGO), 2013 IEEE/ACM
International Symposium on. IEEE, 1–11.

[10] Zia Ul Huda, Rohit Atre, Ali Jannesari, and Felix Wolf. 2016. Automatic Parallel
Pa�ern Detection in the Algorithm Structure Design Space. In Proc. of the 30th
IEEE International Parallel and Distributed Processing Symposium (IPDPS), Chicago,
USA. IEEE Computer Society, 43–52. DOI:h�p://dx.doi.org/10.1109/IPDPS.2016.
60

[11] Zia Ul Huda, Ali Jannesari, and Felix Wolf. 2015. Using Template Matching to
Infer Parallel Design Pa�erns. ACM Trans. Archit. Code Optim. 11, 4, Article 64
(Jan. 2015), Article 64, 21 pages. DOI:h�p://dx.doi.org/10.1145/2688905

[12] Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[13] Zhen Li, Ali Jannesari, and Felix Wolf. 2015. An E�cient Data-Dependence
Pro�ler for Sequential and Parallel Programs. In Proceedings of the 29th IEEE
International Parallel & Distributed Processing Symposium (IPDPS ’15). 484–493.

[14] OpenMP Architecture Review Board. 2008. OpenMP Application Program Inter-
face Version 3.0. (May 2008). h�p://www.openmp.org/mp-documents/spec30.pdf

[15] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Am-
ber Hassaan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman
Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011. �e
Tao of Parallelism in Algorithms. SIGPLAN Not. 46, 6 (June 2011), 12–25. DOI:
h�p://dx.doi.org/10.1145/1993316.1993501

[16] Sean Rul, Hans Vandierendonck, and Koen De Bosschere. 2010. A pro�le-based
tool for �nding pipeline parallelism in sequential programs. Parallel Comput. 36,
9 (2010), 531–551.

[17] Vivek Sarkar. 1991. Automatic partitioning of a program dependence graph into
parallel tasks. IBM Journal of Research and Development 35, 5.6 (1991), 779–804.

[18] Barry Wilkinson and Michael Allen. 1999. Parallel programming. Vol. 999. Pren-
tice hall New Jersey.

SESSION 8 SPAA’17, July 24-26, 2017, Washington, DC, USA

365

http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1007/BF00129843
http://dx.doi.org/10.1109/IPDPS.2016.60
http://dx.doi.org/10.1109/IPDPS.2016.60
http://dx.doi.org/10.1145/2688905
http://www.openmp.org/mp-documents/spec30.pdf
http://dx.doi.org/10.1145/1993316.1993501

	Abstract
	1 Introduction
	2 Approach
	2.1 Computational Unit
	2.2 CU Graph
	2.3 Parallelism discovery

	3 Conclusion
	References



