Parallelizing Audio Analysis Applications - A Case
Study

Ali Jannesari
University of California, Berkeley, USA
jannesari@eecs.berkeley.edu

Abstract—As multicore computers become widespread, the
need for software programmers to decide on the most effective
parallelization techniques becomes very prominent. In this case
study, we examined a competition in which four teams of graduate
students parallelized two sequential audio analysis applications.
The students were introduced with PThreads, OpenMP and TBB
parallel programming models. Use of different profiling and
debugging tools was also taught during this course. Two of the
teams parallelized libVorbis audio encoder and the other two
parallelized the LAME encoding engine. The strategies used by
the four teams to parallelize these applications included the use
of taught programming models, focusing on both fine-grained
and coarse-grained parallelism. These strategies are discussed
in detail along with the tools utilized for the development and
profiling. An analysis of the results obtained is also performed
to discuss speedups and audio quality of the encoded output.
A list of the lessons to be remembered while parallelizing an
application has been provided as well. These lessons include best
pedagogical methods, importance of understanding the program
before choosing a programming model, concentrating on coarse-
grained parallelism first, looking for dependency relaxation,
parallelism beyond the predefined language constructs, the need
of practice or prior experience in parallel programming and the
need for assisting tools in parallelization.

Keywords—Teaching parallel programming, Project based Par-
allelization, Parallelizing existing sequential applications

I. INTRODUCTION

Multicore processors with several cores on a single chip
have become widespread and standard. This trend will not only
continue to accelerate in the coming years but will also require
software developers to focus more on parallel programming.
Focusing on the practical skills, tools and techniques required
for developing software for multicore systems can lead to ex-
ploring some new software engineering questions and provide
some very useful answers.

Programmers often face several questions while paralleliz-
ing a program, such as which programming model would work
best, which parallelization techniques would prove to be most
useful, which tools are necessary for detecting parallelization,
and how the existing sequential applications can be modified
to exploit parallelism.

We conducted a case study of parallelizing real world
programs using existing tools and libraries to answer some
of these questions. The study occurred during a multicore
programming course. Fourteen graduate computer science stu-
dents participated in the course. The first four weeks of the

Zia Ul Huda, Rohit Atre, Zhen Li and Felix Wolf

Technical University of Darmstadt, Germany
{huda, atre, li, wolf} @cs.tu-darmstadt.de

course were dedicated for the introductory lectures and exer-
cises about parallel programming. In the last ten weeks, differ-
ent performance optimization techniques for parallelized appli-
cations and use of different instrumenting/statistical profiling
tools like Gprof[1] and Valgrind[2] were taught to the students.
During these ten weeks, the students were given the task to
parallelize real world applications. We selected audio analysis
applications, i.e. sequential libVorbis [3] and LAME [4] audio
encoding applications since they are widely used, popular,
complex and well documented. The students were divided
into four teams and a competition was held between them
to efficiently parallelize the selected applications. Teams A
and B consisting of four students each, competed with each
other to parallelize the libVorbis encoder, while teams C and D
consisting of three students each, competed to parallelize the
LAME encoder. We analyzed their strategies and approaches to
parallelization for each application in detail and also performed
a quantitative analysis of the results obtained by the teams. The
winner among the four teams was decided based on a multitude
of criteria.

Each of the four teams employed different strategies to par-
allelize their respective application. Teams A and B focused on
coarse-grained parallelism. Team A concentrated on extending
the C-interface of libVorbis with OpenMP, while Team B used
the flow graph construct available in TBB for the same purpose
and as a result were able to achieve higher speedup. Each team
working on LAME employed a different strategy. While one
of them used OpenMP to encode each input chunk separately
the other team chose the master/worker pattern using PThreads
library. Due to the use of serial optimizations, better control
over the thread functionality through PThreads, and additional
techniques like dynamic scheduling, the latter was able to gain
the best average speedup of 9.04 for 12 threads on an Intel
Xeon X5670 CPU with 6 hyper-threaded cores, in all of the
teams. Unless specified otherwise, all speedups reported from
hereon will be for the aforementioned configuration.

Students were asked to submit a weekly report about their
progress and problems faced during parallelization. Addition-
ally, we conducted periodic interviews with our students during
the project phase to assess the effectiveness of the material
taught. The general feedback of the students indicated that the
tools and optimization techniques introduced during the course,
helped them overcome problems during the parallelization
of their respective applications. Based on our analysis we
have drawn a list of lessons learned while parallelizing an
application, which includes best pedagogical methods, having
a thorough understanding of the program before choosing a

programming model, focusing on coarse-grained parallelism
first, finding relaxable dependencies, parallelizing beyond pre-
defined language constructs, understanding the importance of
prior experience in programming and the need of assisting
tools for parallelization.

The rest of the paper is organized as follows. Section II
provides an overview of the material introduced during the
course. Section III provides an overview of libVorbis and
LAME respectively. Section IV discusses the various strategies
the teams employed to parallelize their respective application.
Section V provides a quantitative comparison between various
aspects of the teams’ results for each of the projects, followed
by Section VI, which provides a summary of the lessons we
can offer using this case study. Related work is discussed in
Section VII. Section VIII concludes this case study.

II. PEDAGOGICAL ASPECTS

In this section we briefly discuss the material taught in lec-
tures during the multicore programming course. The lectures
were mainly divided into three sections: parallel programming;
profiling tools; debugging tools and optimization techniques.

A. Parallel Programming

The first set of four lectures were dedicated to introduce
the basics of parallel programming. Students were taught the
basic concepts of multicore hardware and different memory
architectures. The second, third and fourth lectures introduced
parallel programming using PThreads [5], OpenMP [6] and
Intel TBB [7] respectively. Each lecture was followed by a
programming exercise. The exercise tasks were designed to
give a hands-on experience to parallel programming for the
above mentioned programming models. Solving the exercise
tasks was mandatory for students. Their solutions were revised,
graded and used as the basis for grouping the students together
into teams for the final project phase.

B. Profiling Tools

At the end of first phase of the lectures, the students were
introduced to the project tasks: parallelizing libVorbis [3] and
LAME [4]. The students were given two weeks to analyze the
serial code of these projects. During this phase, we introduced
them profiling tools: Gprof[1], Valgrind[2] and Intel VTune[8].
They used these tools for analyzing the sequential code of
their respective projects. Outputs of the profiling tools revealed
call graphs, hotspots and many other important information
about the sequential code. This helped them form effective
parallelization strategies. The strategies will be discussed in
detail in section IV.

C. Debugging Tools & Optimization Techniques

Once the students developed their first working parallel ver-
sions, they needed to validate and optimize their applications
in order to get better performance with correct functionality.
During this phase we introduced gdb [9], Helgrind [10], [11],
[12], TotalView [13] and ThreadSanitizer [14] as some of the
debugging tools available for the multi-threaded applications.
We encouraged the students to look for data races and other
errors using these tools and report their output as a part of

their final submission. These tools helped the students to get
rid of some bugs in their parallelized applications.

The students learned some optimization techniques in the
last phase of the project. We taught the basic techniques
like load balancing, synchronization optimizations and cache-
friendly programming. The students used the above mentioned
tools to detect performance bottlenecks in their parallel pro-
grams and then applied the taught optimization techniques to
overcome these bottlenecks and make their parallel applica-
tions more efficient.

III. LIBVORBIS AND LAME

In this section we briefly introduce libVorbis [3] and
LAME [4].

A. LibVorbis

Ogg Vorbis is a fully open, non-proprietary, patent-and-
royalty-free, general-purpose compressed audio format for mid
to high quality (8kHz-48.0kHz, 16+ bit, polyphonic) audio
and music at fixed and variable bitrates from 16 to 128
kbps/channel. LibVorbis is the reference implementation of
the Vorbis codec. It is the lowest-level interface to the Vorbis
encoder and decoder, working with the packets directly.

e

N

Fig. 1. Workflow for libVorbis Encoding.

Teams A and B were asked to parallelize the encoder of
libVorbis. Figure 1 shows the encoding workflow of libVorbis.
The encoder of libVorbis gets the audio data and initializes
a vorbis_block for it. Then it analyses and encodes the
vorbis_block. The encoded vorbis_block is written
to the output stream. This process is repeated until the audio
data is available for encoding.

B. LAME

LAME is a high quality MPEG Audio Layer III (MP3)
encoder licensed under the LGPL. It encodes audio at mid-
high and variable bit-rates into MP3 format.

O

NS

N

Fig. 2. Workflow of Lame MP3 encoder.

TABLE 1. EXERCISE RESULTS.

Marks # of Students
> 90% 6
> 80% 5
< 80% 3

Teams C and D were asked to parallelize LAME. Figure 2
shows the encoding process of LAME. LAME encodes frames
of the input audio one by one. During the encoding process,
analysis states are saved and used to guide the encoding
process of the next frame. This means each frame depends on
the previous frame during the encoding process. Breaking these
dependencies significantly reduces the quality of the encoded
MP3 file.

IV. TEAM STRATEGIES

Table I shows the percentage of points achieved by students
in the exercise sessions in the first phase of the course. We
distributed the students into four teams based on their points.
We tried to construct teams consisting of students drawn
uniformly from every category.

Every team was free to choose a parallelization strategy of
their own liking. The teams were asked to submit a weekly
report of their progress during the project. This helped to keep
track of the effort spent by the teams on different tasks and
also the different strategies they followed. Any difficulties and
changes in the strategy were also reported during the project .

The different strategies are described in the following
sections.

A. Team A

Team A was comprised of four students. Their task was
to parallelize libVorbis. They planned to use three different
approaches: 1) workflow changes to allow using data decom-
position patterns, 2) internal / fine-grained parallelization and
3) serial optimizations.

Team A’s plan was to understand the code (one week),
test parallelization ideas (one week), parallelize and optimize
(two weeks), test and evaluate (two weeks) and document (two
weeks). The team used Vampir[15], Gprof, Microsoft Visual
Studio and Intel VTune to profile the code and detect the hot
spots from the code for fine-grained parallelization. Most of
these tools were introduced during the course.

They used OpenMP to incrementally parallelize the hot
spots in the code. However, the speedups achieved were not
promising. Several low level functions also had premature
exit conditions, which are not allowed in OpenMP, so they
abandoned this approach. Serial optimizations like the use of
fast abs function calls reduced the execution times of serial
programs by 5%.

The team largely focused on the coarse-grained paralleliza-
tion of the code due to the workflow of the application, which
included an interface feeding the data samples serially to the
libVorbis library for encoding. They parallelized the interface
to encode multiple samples in parallel.

For this approach, they wanted to extend the existing C-
interface of libVorbis itself. Using Intel TBB, a C++ library,

would break compatibility and was thus discarded for this
implementation. They decided to use the task construct of
OpenMP to manage heterogeneous tasks, while still being able
to exploit the strengths of OpenMP, i.e., automatic creation,
destruction and scheduling of threads.

The first parallelized version achieved a considerable
speedup of about 3.4 times. Applying the profiling tools,
taught during the course, on the parallel version revealed the
following issues: A large sequential phase in the beginning,
due to a sequential read of the whole input file, was detected; A
synchronization overhead at the end of each encoding task was
found due to sequential output of the data. Both of these issues
reduced the overall speedup. Figure 3 shows the described
issues with green showing the number of logical cores used
by the encoding process. To overcome these issues, the team
started to optimize their solution. They imported the data from
the input file in chunks instead of all at once. This allowed
the first parallel tasks to be created earlier, thus reducing the
large sequential phase in the beginning, as seen in Figure 4
compared to that in figure 3. They discovered a pipeline pattern
at this stage, but could not rewrite the entire codebase due to
the time limitations.

The team tried to reduce the large amount of synchro-
nizations at the end of the whole process using OpenMP
taskwait and usleep for synchronizing the threads. They also
decided to use hyper-threading for data output to reduce the
sequential write at the end. In order to achieve this, they moved
the writing of the encoded packets into tasks. Every 100th
task must write out the next 100 finished workpackets. The
restriction on the number of blocks writing at one time was
chosen because otherwise other tasks might be stuck waiting
to enter the critical section required for the write. So a uniform
concurrency was achieved from start to end, as seen in sample
Figure 4. This, along with further fine-tuning of the application
and the use of thread affinity, enhanced the average speedup
of the application to almost 6.0.

In the end, the team reported that they could have used
the pipeline construct available in TBB for their approach but
firstly, it would break the compatibility of libVorbis, written
entirely in C, and secondly, when they discovered the pipeline
pattern, they had already made an effort to implement the
parallelized version in OpenMP using OpenMP tasks.

B. Team B

Team B was also comprised of four students with the
same task of parallelizing libVorbis. They studied the code and
profiled its dependencies to extract its dependency graph using
Callgrind and Kcachegrind[16], both based on Valgrind, in the
first week of project. They found the computationally intensive
regions of the code and discovered that the task encoding the
data block by block had the potential to be parallelized.

The approach of Team B was to use the pipeline pattern
for achieving data parallelization as well as fine-grained paral-
lelism. However, parallelizing the loops using OpenMP did not
give appreciable speedup and in fact, the runtime was increased
due to synchronization overhead. Also, the team was not able
to parallelize all the loops found because they could not break
the dependencies. This approach was abandoned.

Milliseconds
0 500 1.000

Other Processes
B System Process

1.500 2.000

CPU Utilization

Mumber of Logical Cores

Idle Process
I libVorbis Encoder

Other Processes

| B system Process 1L
Idle Process

Fig. 3. Team A: First 3 seconds of sample concurrency plot for first parallelized version.
Seconds
0 1 2 3 4
| 1 1 1 1 | 1 1 1 1 | 1 1 1 | 1 1 1 1
CPU Utilization

Number of Logical Cores

0 libVorbis Encoder

Fig. 4. Team A: Sample concurrency plot of final parallelized version for entire encoding process.

The second approach was to implement the pipeline using
the TBB flow graph construct for data parallelization. Using
TBB, Team B was able to get the first complete parallel version
of the application in two weeks, the quickest of all 4 teams.
This version was able to encode the data blocks in parallel.

Team B reported that a lot of time and effort was spent to
find out all global variables which were shared among different
threads. Then for each global variable, they detected all the
source code lines at which those global variable might be
accessed or modified by different threads. They needed to add
synchronizations at these locations in order to avoid any data
races.

The pipeline was implemented using both the pipeline and
flowgraph constructs of TBB, but the version with the pipeline
construct was found to be slower than the one with flowgraph
construct. The reason for this was the usage of token-based

scheduling of the pipeline construct, since the pipeline needs
a specific token count as a maximum limit for the number of
parallel processes. Finding an optimal number of tokens is very
difficult. Unlimited node capacity for the flowgraph construct
got the best speedup for the application, as the node capacity
was determined by TBB automatically. The team was able to
achieve an average speed up of 8.5.

Team B reported that their decision to use TBB for
parallelization at the higher level of the application saved them
from unnecessary complications or problems which they would
have encountered if a pipeline had been constructed manually
using OpenMP or Pthreads. Also, all the communication and
synchronization done internally by TBB was optimal, thus
improving the overall speedup of the program. TBB enabled
them to quickly develop the parallel version.

TABLE II.

TEAM COMPARISONS.

Team | Project Profiling Tools Library Parallelism Parallelism Imple-
Proposed mented
A libVorbis | Vampir, Gprof, MS Visual Studio, | OpenMP Coarse and Fine- | Coarse-grained
Intel vTune grained
B libVorbis | Callgrind, Kcachegrind TBB Coarse and Fine- | Coarse-grained
grained
C LAME Gprof, Intel vTune OpenMP | Coarse and Fine- | Coarse-grained
grained
D LAME Gprof, Intel vTune, intel Inspector, | PThreads | Coarse and Fine- | Coarse and Fine-
Scalasca grained grained

C. Team C

Team C consisted of 3 students tasked with parallelizing
the LAME MP3 encoder. The first week was spent analyzing
the code and creating the dependency graph. They used Intel
Vtune and Gprof for dependency analysis. Due to the nature
of MP3 encoding, Team C discovered that the dependencies
between two consecutive frames were very hard to break.

Two sets of flags named global flags and internal flags are
used for each frame in the serial LAME encoder. Each frame
has access to global flags and changes them according to its
own state. The global flags are then used by the next frame.

The team opted for data parallelism at a higher level and
had a working implementation in the next two weeks of the
project. They considered three strategies: a three-stage pipeline
with input, encode and output, a seven-stage pipeline and
lastly, data parallelism.

[Input File not Empty]

>95%

global state global state
Read a structure structure Save the
Frame Frame Frame
InputBuffer . MP3Buffer

Copy from
.| InputBuffer

: to
.| local buffer

Fig. 5. Pipeline implementation approach of Team C.

The three-stage pipeline strategy shown in the upper part of
figure 5 was found to be ineffective in practice, as the encoding
stage took 95% of the overall processing time. In the same way,
one of the stages of the seven-stage pipeline shown in lower
part of figure S, took 65% of the total processing time. This
imbalance between stages would have worsened the pipeline’s
runtime and so the pipeline strategy was abandoned.

For data parallelism, the team found that the front end of
the LAME encoder reads a frame of 1,152 samples from input
and encodes them one by one until it is done. So three possible
strategies could be derived for parallelization: encode samples
in parallel in a frame containing 1,152 samples, encode frames
in parallel or lastly, partition the input file into several sections
to encode in parallel.

The team chose the third strategy for parallelization as
the first two were not feasible due to global and internal flag

dependencies. First, the whole file is read into main memory.
The global flags are initialized at the start and copied to
each section to avoid any race conditions. Each section is
then encoded separately using OpenMP parallel constructs.
The team had a working parallel implementation of a LAME
encoder in the 8th week of the project. The only drawback of
this strategy was the loss of information at the start of each
section from the previous section, hence degrading the sound
quality at that point. To reduce these effects on the output
file, Team C created chunks of the input file with biggest size
possible. The smallest chunk size allowed was 100 frames.
The team was able to achieve an average speedup of 8.3.

The last two weeks of the project were spent on testing
the parallelized version, documentation and evaluation. The
team used Helgrind and Intel Vtune for the testing purposes.
They reported a lot of data races reported by Helgrind but
all of them were false positives either due to OpenMP thread
creation or due to memcpy and malloc calls. In the end, Team
C reported they achieved better speedup by parallelizing the
front end of Lame. They had no time left to implement their
pipeline ideas and explore if they could improve the runtime
with that method.

D. Team D

Team D, consisting of three students, also parallelized the
LAME MP3 encoder. Their parallelization approach was the
global domain decomposition of the audio file. The input
file is split into chunks and encoded in parallel. To break
the dependencies between the last frame and first frame of
successive chunks, ghost frames (copies of the last frames of
the previous chunk) were introduced before each chunk.

The master/worker design pattern was implemented using
the PThreads library. The master thread reads the input file and
stores the decoded PCM data in the input ring buffer. If enough
data for one chunk is read, the master creates a task struct and
places it in the task queue, where it will be consumed by one
of the worker threads. Worker threads encode their assigned
chunk (including the previously mentioned ghost frames) and
write their result into the output ring buffer. The master thread
collects the finished task structs and writes the encoded result
to the output file in the correct order. The team also planned to
vectorize further code sections to improve the speedup. Some
serial optimizations were also proposed.

The team used Intel VTune, Intel Inspector[17], Gprof and
Scalasca[18] to profile the code. Manual scripts were written
to automate the testing of the parallelized version as well as
analysis of output files.

By week four of the project, Team D had a working parallel
version of the LAME encoder. Vectorization of some code
segments was included in this implementation. The team was
able to achieve a significant speedup, but they had delayed
sound in the start of the output file.

The team continued to optimize their implementation by
vectorizing more code segments and implementing a schedul-
ing policy. In the initial implementation, a static chunk size
of 512 frames was used. The worker threads had to sit idle
in the beginning of the program as the master thread created
tasks for them serially. This problem could be solved by
using a small chunk size but this led to a large number
of ghost frames between chunks, hence increasing runtime
and decreasing output quality. Figure 6 shows the runtimes
achieved for a single input file for different versions of the
parallelized project.

21

Original

18 mP

15 W P+V
" P +V +AT
g 12
£
€ 9
o

6

3

0

1 2 3 4 5 6 7 8 9 10 1 12
Worker Threads

Fig. 6. Team D: Runtime plot for a sample input file: parallelized (P),

parallelized & vectorized (P + V) and parallelized and vectorized using auto-
tuned parameters (P+V+AT).

In order to achieve the best performance they decided to
incorporate a scheduling strategy which dispatched tasks of
different sizes comparable to the guided scheduling strategy
used in OpenMP for the parallel execution of for loops. In
the beginning, using a minimal chunk size, small tasks are
created such that threads could start encoding with a relatively
short waiting time. Given n worker threads, the chunk size was
gradually increased after every n tasks until a maximum chunk
size was reached. Thus, part of the input file was encoded
without much overhead caused by ghost frames. Towards the
end, the chunk size was again reduced until the last few created
tasks had the minimal chunk size. These small tasks can be
used to achieve a workload distribution at the end such that
all threads end at approximately the same time, thus acheiving
very good load balancing.

The last two weeks were used for bug fixing and fixing
memory leaks discovered using Valgrind. The evaluation of the
parallelized version and documentation was also done in those
last two weeks. Team D developed a script to find the optimal
parameters for their parallelized application. The results of
their auto-tuning are shown in the Figure 6 as P+V+AT. At
the end they were able to achieve an average speedup of 9.04
for the different types and sizes of input files. Their speedup
surpassed the speedups achieved by all other three teams in
the competition.

Team D summarized their work by reporting that the use
of vectorization and load balancing in their project helped
improve their speedup considerably. Still, they reported that
the use of more resources by the master thread, serial overhead

at the start and end of the program, interthread communi-
cation and computation of redundant ghost frames limited
their speedup. Moreover, their results showed that the LAME
encoder can benefit from serial optimizations.

V. QUANTITATIVE EVALUATION

Quantitative comparisons between the teams working on
libVorbis and LAME revealed some interesting points. Table
IIT shows the total LOC without blank lines and comments
for each of the teams, which are compared to the sequential
versions of their respective projects. Compared to sequential
LAME and libVorbis, the parallel versions vary by about 0.4%
and relatively few lines express parallelism. The table also
provides details about the number of lines modified, added
and removed by the teams. For instance, it is clear that Team
B had to modify and add fewer LOC to sequential libVorbis in
comparison to Team A since they used the existing language
constructs in TBB. Also, Team D modified and added the
maximum number of LOC as they made effective use of the
flexibility and better control over thread functionality provided
by PThreads, and thus attained the best speedup.

Team D achieved an impressive speedup of 9.04 for 12
threads on an Intel Xeon X5670 CPU with 6 hyper-threaded
cores. They also claimed that the benefits from their applied
vectorizations could have been much more apparent if their
implementation had been run on current Intel Haswell CPUs
(Intel Xeon Phi co-processors with a vector width of 256bit
/ 512bit and direct SIMD table lookup support). These CPUs
support the Advanced Vector Extensions 2 (AVX2) instruction
set which is an enhancement over Intels previous vector exten-
sion called Streaming SIMD Extensions (SSE). For libVorbis,
the speedup of Team B was better (8.45) than Team A (5.98)
for 12 threads on the same CPU.

The audio files for measuring the performance of the
teams were taken from Sound Quality Assessment Material
recordings for subjective tests (SQAM) benchmark [19] and
were converted into the WAVE format. Each chosen file was
encoded three times for all the specified number of threads
and average speedup for all sample files was calculated. The
comparison for both LAME and libVorbis can be seen in
Figure 7 which clearly shows that Team D achieved the
maximum speedup for 12 threads, followed by Team B, which
was the better of the two libVorbis teams. All the teams
attained their respective maximum speedup at 12 threads since
the underlying architecture had 6 physical cores and supported
hyper-threading. It is noticeable from Figure 7 that the speedup
beyond 12 threads quickly drops off for libVorbis, but declines
gradually for LAME.

Since the parallel encoders would not produce output files
that are bitwise equal, all the teams were asked to encode
the input wave file with a parallel and serial encoder using
identical settings and report the comparison of the two output
waveforms. A direct comparison of these two encoding results
showed a maximum deviation of only 0.04% in all of the
teams. This demonstrated that the encoding performed by the
parallel encoders developed by the teams did not deteriorate
the audio quality of the input files. In addition, any differences
between the files encoded by the original encoder and the
parallel encoder were inaudible.

TABLE III.

LOC COMPARISONS FOR SEQUENTIAL LIBVORBIS AND LAME WITH THE PARALLELIZED

VERSIONS OF THE FOUR TEAMS

Program Total LOC* LOC LOC Added LOC Total effort in
Modified Removed Person-Hours”

Sequential libVor- 54725 - - -

bis

Team A 56120 890 1398 3 ~4%50

Team B 55138 6 519 106 ~4%50)

Sequential LAME 41197 - - -

Team C 41885 31 695 7 ~3*%60

Team D 42894 126 1843 146 ~3*60

* Without blank lines or comments.
b ~n#x represents the effort of n people for x hours each.

10.0000
9.0000
8.0000
7.0000
6.0000

5.0000

Speedup

4.0000
3.0000
2.0000
1.0000
0.0000
2 4 8 12 16 32
Number of Threads

===Team A (libVorbis) ~ *====Team B (libVorbis) Team C (LAME) *==Team D (LAME)

Fig. 7. Comparison of average speedup for libVorbis and LAME.

The difference between the size of the output files gener-
ated by the sequential encoder and the parallelized encoder of
each team was also negligible. The maximum value for this

difference among all the teams was found to be 0.112%, for
one of the files from Team B.

In addition to the speedup achieved and the quality of
their audio output, the teams were also given points based
on effective use of profiling techniques, cache friendliness of
the code and the number of deadlocks and data races. All the
teams were asked to provide reports of their profiling tools.
They were also rewarded points for certain code metrics that
included LOC/(Lines of comments), coding style, cyclomatic
complexity and so forth. Team D won the competition because
of the best overall score.

VI. LESSONS LEARNT

We offer seven lessons learned from our experience.

A. Best Pedagogical Methods

This course provided a good opportunity for us to under-
stand and experience the difficulties and challenges in teaching
parallel programming to graduate computer science students.
Most of our students had less experience of parallel program-
ming. We learned that our students could develop reasonable
parallel applications in a short time span. The students needed

a hands-on experience of the parallel programming and the
purposeful exercises provided after each programming model
lecture helped them learn parallel programming quite quickly
in a practical way. So, the intensive training provided to them
in first four weeks of the course was sufficient for them to
adequately parallelize the projects.

We set up four phases of the project and set some goals
and milestones for the teams. Each phase was allocated a
specific time and the teams were asked to submit their progress
reports and provisional results at the end of each phase. These
phases were: analysis of the existing sequential code, drawing
a parallelization strategy and algorithm, development of a
parallel version of the assigned application and validation and
optimization of the developed parallel application. If a team
completed one phase earlier than the proposed milestone, they
could start working on the next phase. None of the teams
missed any deadlines during the project. We interviewed our
students and majority of them admitted that setting up goals
with specific time constraints encouraged them to be more
focused and motivated to achieve those specific goals. For us
as tutors of the course, it was helpful to know the progress of
each team after every milestone. We could verify the results of
each team in a timely manner and provide feedback to them,
instead of getting all of them together at the end of the project.

B. Choose the appropriate Programming Model

Before parallelizing the sequential program, the first ques-
tion to ask oneself would be which parallel programming
model should be chosen. The answer to this question depends
on many aspects including the language used to write the
sequential program, the execution environment of the target
platform and the performance constraints. During the course,
we noticed that one factor is very important for answering this
question - understanding the program.

There is a wide range of legacy sequential applications.
Most programmers, while parallelizing such a legacy appli-
cation, do not tend to spend much time understanding the
code and its characteristics. They usually choose a parallel
programming model based on direct and objective constraints.
However, we found that the time spent on understanding
the code is very important. Of the two teams that worked
on libVorbis, Team A decided to use OpenMP, since they

thought it would be the easiest way to parallelize the code
incrementally. The decision was made solely based on the
features of programming models; the characteristics of the
sequential program were not considered. In contrast, Team B,
after spending some time reading the code, found that libVorbis
works in a pipeline style. After discovering this, they believed
that choosing TBB would be more convenient. Team A learned
this lesson the hard way. After a few weeks, Team A noticed
the same pipeline in libVorbis. However, they had already
written the majority of their code and they did not have enough
time to start over with a new programming model. Therefore,
their application resulted in a worse speedup compared to
Team B in the final competition. The programming skills of
the members of Team A were quite impressive. However, they
wasted a lot of time and paid the price of not understanding
the code first.

C. Coarse-Grained Parallelism First

Fine-grained parallelism is an important part of paralleliz-
ing sequential code. However, the reports of the teams showed
that replacing a small sequential computation routine with its
parallel version did not significantly improve the performance,
because the fraction of the runtime of parallelized code was
too small compared to that of the remaining sequential code.
In contrast, the most significant speedup came from coarse-
grained parallelism. Team A, Team B and Team C concentrated
on coarse-grained parallelism only, and achieved a speedup of
5.98, 8.45 and 8.28 with 12 threads respectively. Team D also
concentrated on coarse-grained parallelization first. Once they
had a parallel version, they then started adding fine-grained
parallelization which led to a speedup of 9.04 with 12 threads.
The improvement in speedup of Team D over Team C is only
9%. This clearly shows that to achieve a good speedup quickly,
one should explore coarse-grained parallelism first.

Meanwhile, Team A also mentioned that the portion of
fine-grained parallelism heavily depends on algorithm design
and implementation. An algorithm designed and implemented
by following the traditional sequential programming’s golden
rules in order to save time and memory, could result in
massive dependencies between operations. Thus in some cases,
fully utilizing fine-grained parallelism means redesigning the
algorithm. Obviously, this requires more time to analyze the
code and understand the program. As a result, we highly
recommend focusing on coarse-grained parallelism first.

D. Look for Dependency Relaxations

Sometimes sequential applications cannot be parallelized
due to data dependencies. Based on the specifications of the
application, one can relax some of these dependencies, opening
up opportunities for parallelization to achieve speedup.

During parallelization of the LAME encoder, teams C and
D realized that although each MP3 frame depends on the flags
set by the previous frame, the dependency can be relaxed.
They divided the input file into chunks and used the idea of
processing “ghost points” from fluid simulation problems on
the border of the chunks. This relaxation of the dependencies
along the border of chunks resulted in average speedups of
8.45 and 8.3 for Team C and D respectively. On the other
hand, the effects of this dependency relaxation on the output

were not very significant. There was no audible noise or
loss of quality in the outputted MP3 file. Therefore, it is
advisable to concentrate on the specifications of an application
before starting the parallelization and to look for relaxable
dependencies not only along the critical path but also beyond
it in order to extract more parallelism.

E. Look Beyond Predefined Language Constructs

Programmers tend to find parallelism in predefined lan-
guage constructs such as functions and loops. It is natural
to focus first on dependencies between the existing language
constructs and thus to parallelize them. But there may be
potential hidden parallelism available beyond these predefined
language constructs. Concentrating on code blocks outside of
these constructs and resolving dependencies between them
may reveal more parallelization opportunities. This can result
in the extraction of new tasks or discovery of new parallel
design patterns.

Team A tried to parallelize libVorbis incrementally using
OpenMP directives on the existing constructs, i.e. loops. They
could only achieve a minor speedup with their approach.
On the other hand, team B used a comprehensive approach
and looked beyond the predefined language constructs. They
discovered a pipeline pattern in the same application and
transformed the code accordingly to achieve a better speedup.
The additional speedup achieved by team B over team A shows
the benefits of their approach. Similarly, teams C and D both
analyzed the code of LAME extensively and discovered tasks
beyond the predefined language constructs. They transformed
the code to implement a pipeline pattern and a master/-
worker pattern respectively. Both of the teams achieved similar
speedups. It is recommended to try to identify parallelism
between code sections of arbitrary granularity and not to rely
on predefined language constructs for parallelization.

F. Black Magic or Not, Depends on Experience

In [20], the authors argued that parallel programming is
not a black magic. The graduate students who had only one
semester’s experience with parallel programming did not find
it overwhelming. However, it does not mean that the art of
parallel programming can be managed quickly. One may be
able to write parallel programs after a short training period,
but writing high quality programs requires a lot of practice.

While evaluating the results of the teams, we found that the
work of Team D was superior to that of the other teams. They
chose PThreads since it provides the flexibility to control every
aspect of the program. The sequential code was refactored
precisely in accordance with their parallelization ideas. Fine-
grained parallelism, where a single operation is too small to be
assigned as a task, were accomplished by performing a batch
of vectorized operations. On a high-level, audio frames were
processed in a master/worker pattern constructed by the team,
and both load balancing and pipeline efficiency were consid-
ered. In addition, to ensure that the encoded audio file did
not lose quality at the connecting points of two audio frames,
they added “ghost frames” at the borders. Finally, they even
provided an auto-tuning script to decide the best parameters
for different platforms in order to ensure that the best speedup
could be achieved. Their design and implementation led to

linear speed up in some individual test cases, and super linear
speedup in the others. After a short interview, we found out
that one of the team members had some parallel programming
experience before joining the lab. Parallel programming is not
a black magic, but it is still much more complex than sequential
programming and more difficult to learn. Thus, practice in
parallel programming is even more important than in sequential
programming.

G. The Need for Assisting Tools is Still Urgent

It is commonly understood today that tools for assisting
parallelization are very important. A lot of tools have been de-
veloped, some of which are commercial. During the course, we
introduced many tools aimed towards assisting the programmer
to write efficient parallel programs, such as Valgrind [2], Intel
Parallel Studio, TotalView[13] and ThreadSanitizer [14]. Some
of the teams also tried the program-analyzing tools provided
by Microsoft Visual Studio. However, based on the results of
interviews, only a few students said that they received any help
from the tools and no one thought that the help these tools
provided was sufficient. In fact many times, students com-
plained about the meaningless output of the tools. For example,
tools for checking the race conditions produced hundreds, even
thousands, of warnings for a small program, and most of the
warnings were false positives. One of the most frequently
asked questions was "How can I get the data dependencies
of the program/function?”, and none of the tools provided
ready-to-use results. The tools that were considered helpful by
the students were still the same as those for finding hot spots
(gprof-like) and memory leaks (Valgrind-memcheck, etc.) and
are more mature. Tools for assisting programmers with writing
efficient parallel programs are still urgently needed and the
existing tools such as DiscoPoP [21], [22], [23] are mainly in
the initial stages of development.

VII. RELATED WORK

Parallel programming courses have been taught all over
the world for quite some time now. Lin [24] reported the
results from a parallel and distributed computing course. They
taught a variety of topics including parallelization in Java,
locks, cache coherence, memory architectures and many more.
Their students reported that the topics covered in the course
were too much for an introductory class. Also programming in
multiple languages made the contents complex. Multiple labs
were conducted to assess the knowledge of the students and
the best passing rate was 67% in one of these labs. Our course
was specific to C/C++ language only and we introduced only
the most important programming models and topics to our
students that helped them focus on parallelizing the projects
more efficiently.

Many universities offer parallel programming course for
undergraduate students. Yazici et al. [25] discussed the im-
portance of using analogies for explaining parallel program-
ming concepts to the students. They reported that the use
of simple real-life examples as analogies helped the students
to successfully design parallel algorithms. Their assessment
demonstrated that a student’s grades achieved in their course
were highly related to the programming background and skills
of that student. This verifies our claim that writing high quality
parallel applications need a lot of practice.

Majority of the fields in science are evolving rapidly by
the introduction of complementary fields. The use of parallel
computers in almost every field of science have made parallel
programming a recommended course for all scientists. Courses
have emerged to cater the needs of such interdisciplinary
fields [26]. Students in these courses come from different
backgrounds (physics, chemistry) and with experiences in
different languages (Python, Java, etc). At the very first step,
the tutors need to teach them a basic common programming
language such as C/C++, so that everybody has the same
knowledge before continuing to learn the actual parallel pro-
gramming lessons. For our case study, all of our students were
from computer science field and were familiar with C/C++
programming. This helped us to concentrate more on the
parallel programming concepts.

Pankratius et al.[20] conducted a case study of parallelizing
Bzip2 application by graduate students. They reported that the
students with the background of computer science found it
difficult to parallelize Bzip2. On the contrary, our students did
not have much difficulty in parallelizing LAME and libVorbis.
We observed that the profiling and supportive programming
tools used by the students have become more sophisticated and
available than the they were at the time of their case study. This
helped the students to find appropriate strategies to parallelize
the applications and locate the important hotspots. However,
progress is still needed in the tools to help writing efficient
parallel programs.

Teaching parallel programming by giving the students a
hands-on experience with real world applications is becoming
popular. Breuer and Bader [27] used shallow-water equations
to train their students. They have developed a code package to
teach parallel programming in multitude of courses. Similarly,
many other courses use the same strategy [28], [29], [30]. All
of them emphasize that the students like to get experience of
parallelizing a real world application instead of some toy and
sample applications. Such courses help them understand the
difficulties and challenges of parallel programming that can
help them in their career and professional life.

VIII. CONCLUSION

In this paper we presented a case study that focused on
parallelizing two real world applications, libVorbis and LAME,
in order to explore and better understand the effective way of
teaching parallel programming and the strategic choices that
programmers need to make while parallelizing an application.
We introduced Pthreads, OpenMP and TBB to the students
in the beginning together with mandatory exercises for hands-
on experience of these programming models. In the project
phase, the students were devided into four teams. Team A
and B competed to parallelize libVorbis. Team A extended
the C-interface of libVorbis using the OpenMP fask construct
and were able to get an average speedup of 6.0 with the
help of hyper-threading. Team B decided to implement the
pipeline pattern using the flowgraph construct of TBB and
achieved an average speedup of 8.5. Team C and D competed
to parallelize the LAME encoder. Team C decided to use
OpenMP to encode each section of the input file separately
and managed to get an average speedup of 8.3. Team D chose
the master/worker design pattern using the PThreads library
to implement their strategy to encode each section of the

input file. They performed local optimizations on their code
like vectorization and also implemented a dynamic scheduling
strategy. Team D won the competition with an average speedup
of 9.04 and were the only team to successfully exploit both
fine and coarse-grained parallelism.

We summarize our experience of the course in six lessons:
Firstly, we recommend using purposeful and targeted exercises
for the initial training of students together with setting time-
based goals during the project phase. While parallelizing, we
highly suggest reading and understanding the program before
choosing the parallel programming model. We also found that
coarse-grained parallelism is more useful as well as easier to
implement mainly because of the use of high-level parallel
programming constructs. Understanding the specifications of
an application and relaxing some dependencies based on these
specifications may help find more parallelism. This means that
one has to look beyond the predefined language constructs and
try to resolve dependencies between arbitrary code sections to
exploit various parallel patterns. Although parallel program-
ming is not a black magic, we still observed a significant
difference between the work of experienced programmers and
of the graduate students with only one semester training.
Finally, the students expected to get ready-to-use results from
the tools for paralleli zing a program. Therefore, the need for
such assisting tools is still urgent and the existing tools need
to be improved.

Acknowledgments.: We would like to thank our course
students for their support. They worked hard and provided us
with all the necessary information for this case study.

REFERENCES

[1] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph
execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120-126, Jun.
1982. [Online]. Available: http://doi.acm.org/10.1145/872726.806987

[2] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, pp.
89-100, Jun. 2007.

[3] [Online]. Available: http://xiph.org/vorbis/doc/libvorbis/overview.html

[4] [Online]. Available: http://lame.cvs.sourceforge.net/

[5]1 B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming.
Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1996.

[6] [Online]. Available: http://openmp.org/wp/openmp-specifications/

[71 1. Reinders, Intel threading building blocks, 1st ed. Sebastopol, CA,
USA: O’Reilly & Associates, Inc., 2007.

[8] [Online]. Available:
intel- vtune-amplifier-xe

[91 R. M. Stallman and C. Support, Debugging with GDB : The
GNU source-level debugger, GDB version 4.16. Boston, MA: Free
software foundation, 1996. [Online]. Available: http://opac.inria.fr/
record=b1104446

[10] A. Jannesari and W. F. Tichy, “Identifying ad-hoc synchronization for

enhanced race detection,” in Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, april 2010, pp. 1 —10.

http://software.intel.com/en-us/

[11] ——, “Library-independent data race detection,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 25, no. 10, pp. 2606—
2616, Oct. 2014.

[12] A. Jannesari, M. Westphal-Furuya, and W. E Tichy, “Dynamic
data race detection for correlated variables,” in Proc. of the
11th international conference on Algorithms and architectures for
parallel processing - Volume Part I, ser. ICA3PP’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 14-26. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2075416.2075421

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

C. Gottbrath and P. Thompson, “Totalview - totalview tips and tricks.”
in SC. ACM Press, 2006, p. 9.

K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detec-
tion in practice,” in Proceedings of the Workshop on Binary Instrumen-
tation and Applications, ser. WBIA *09. New York, NY, USA: ACM,
2009, pp. 62-71.

M. S. Mller, A. Knpfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix,
and W. E. Nagel, “Developing scalable applications with vampir,
vampirserver and vampirtrace,” in Parallel Computing: Architectures,
Algorithms and Applications, ParCo 2007, Forschungszentrum Jlich and
RWTH Aachen University, Germany, 4-7 September 2007, ser. Advances
in Parallel Computing, C. H. Bischof, H. M. Bcker, P. Gibbon, G. R.
Joubert, T. Lippert, B. Mohr, and F. J. Peters, Eds., vol. 15. 10S Press,
2007, pp. 637-644.

J. Weidendorfer, “Sequential performance analysis with callgrind and
kcachegrind.” in Parallel Tools Workshop, M. M. Resch, R. Keller,
V. Himmler, B. Krammer, and A. Schulz, Eds. Springer, 2008, pp.
93-113.

[Online]. Available: http://software.intel.com/en-us/intel-inspector-xe

M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “A scalable tool ar-
chitecture for diagnosing wait states in massively parallel applications,”
Parallel Computing, vol. 35, no. 7, pp. 375-388, Jul. 2009.

“Sound quality assessment material recordings for subjective tests
(sqam).” [Online]. Available: http://tech.ebu.ch/publications/sqamcd

V. Pankratius, A. Jannesari, and W. F. Tichy, “Parallelizing bzip2: A
case study in multicore software engineering,” IEEE Softw., vol. 26,
no. 6, pp. 7077, Nov. 2009.

Z. Li, A. Jannesari, and F. Wolf, “An efficient data-dependence profiler
for sequential and parallel programs,” in Proc. of the 29th IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
Hyderabad, India. 1EEE Computer Society, May 2015, pp. 484-493.
[Online]. Available: http://dx.doi.org/10.1109/IPDPS.2015.41

Z. Li, R. Atre, Z. Ul-Huda, A. Jannesari, and F. Wolf, “Discopop:
A profiling tool to identify parallelization opportunities,” in Tools
for High Performance Computing 2014. Springer International
Publishing, Aug. 2015, ch. 3, pp. 37-54. [Online]. Available:
http://www.springer.com/us/book/9783319160115

Z. U. Huda, A. Jannesari, and F. Wolf, “Using template matching to
infer parallel design patterns,” ACM Transactions on Architecture and
Code Optimization, vol. 11, no. 4, pp. 64:1-64:21, Jan. 2015.

H. Lin, “Teaching parallel and distributed computing using a cluster
computing portal,” 2013 IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum, vol. 00, no.
undefined, pp. 1312-1317, 2013.

A. Yazici, A. Mishra, and Z. Karakaya, “Teaching parallel computing
concepts using real-life applications,” INTERNATIONAL JOURNAL OF
ENGINEERING EDUCATION, vol. 32, no. 2, pp. 772-781, 2016.

E. Cesar, A. Cortés, A. Espinosa, T. Margalef, J. C. Moure, A. Sikora,
and R. Suppi, Teaching Parallel Programming in Interdisciplinary
Studies. Cham: Springer International Publishing, 2015, pp. 66-77.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-27308-2_6

A. Breuer and M. Bader, “Teaching parallel programming models
on a shallow-water code.” in ISPDC, M. Bader, H.-J. Bungartz,
D. Grigoras, M. Mehl, R.-P. Mundani, and R. Potolea, Eds.
IEEE Computer Society, 2012, pp. 301-308. [Online]. Available:
http://dblp.uni-trier.de/db/conf/ispdc/ispdc2012.html#BreuerB12

G. Aloisio, M. Cafaro, I. Epicoco, and G. Quarta, “Teaching high
performance computing parallelizing a real computational science
application,” in International Conference on Computational Science.
Springer, 2005, pp. 10-17.

K. Claypool and M. Claypool, “Teaching software engineering through
game design,” in ACM SIGCSE Bulletin, vol. 37, no. 3. ACM, 2005,
pp. 123-127.

R. Keller, “Teaching parallel programming to undergrads with hands-
on experience,” in Workshop on Parallel, Distributed, and High-
Performance Computing in Undergraduate Curricula (EduPDHPC)
in conjunction with Sc-13: The International Conference for High
Performance Computing, Networking, Storage, and Analysis, Denver,
CO, USA, 2013, pp. 1-8.

