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The triumphant spread of multicore processors over the past decade increases the pressure on software
developers to exploit the growing amount of parallelism available in the hardware. However, writing parallel
programs is generally challenging. For sequential programs, the formulation of design patterns marked a
turning point in software development, boosting programmer productivity and leading to more reusable and
maintainable code. While the literature is now also reporting a rising number of parallel design patterns,
programmers confronted with the task of parallelizing an existing sequential program still struggle with
the question of which parallel pattern to apply where in their code. In this article, we show how template
matching, a technique traditionally used in the discovery of sequential design patterns, can also be used to
support parallelization decisions. After looking for matches in a previously extracted dynamic dependence
graph, we classify code blocks of the input program according to the structure of the parallel patterns we
find. Based on this information, the programmer can easily implement the detected pattern and create a
parallel version of his or her program. We tested our approach with six programs, in which we successfully
detected pipeline and do-all patterns.
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1. INTRODUCTION

The success story of multicore processors means that the market for single-core pro-
cessors is shrinking continuously. During the past decade, the degree of parallelism
available in the hardware has grown quickly and decisively. Unfortunately, turning
an existing sequential program into a parallel one is not an easy task. Although mod-
ern compilers are able to detect the parallelism available in simple loops [Kennedy
and Allen 2002; Vachharajani et al. 2007], a wide range of sequential programs can-
not profit from these strategies because such compilers may miss coarser-grained but
sometimes more scalable parallelism.

To strengthen programmer productivity, over the years software engineers have
collected a comprehensive list of sequential design patterns [Gamma et al. 1995].
These patterns improve the quality, reusability, and maintainability of the software. To
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simplify the development of parallel programs, many parallel design patterns have
been introduced [Mattson et al. 2004]. These patterns provide reusable solutions for
common problems and help avoid concurrency bugs like deadlocks and data races,
which are very difficult to locate. These patterns are usually implemented via stan-
dard parallel programming interfaces such as OpenMP or Intel TBB. Jahr et al. [2013]
presented a systematic pattern-based approach to convert an existing sequential pro-
gram into a parallel one. However, their method requires intimate familiarity with the
code to be parallelized as well as comprehensive knowledge of parallel constructs and
patterns.

Many useful techniques have been proposed to infer the design patterns underlying
already existing sequential applications [Dong et al. 2008; Hayashi et al. 2008; Gupta
et al. 2011]. One of them, template matching [Dong et al. 2008], identifies design pat-
terns by mapping a UML diagram of the pattern onto the UML diagram of the target
software. In this article, we show how template matching can also be used to find
parallel patterns in sequential programs as a guideline for their later parallelization.
Following the observation that most parallel patterns are based on assumptions about
data dependences, we replace UML diagrams with data-dependence graphs to charac-
terize both the pattern and the software. Our approach, which is implemented as an
extension of the data dependence profiler DiscoPoP [Li et al. 2013; Li et al. 2015], au-
tomatically infers potential parallel design patterns from the dependence graph of the
program and specifies the division of code blocks according to the pattern structure.
Based on this information, the programmer can then easily parallelize the code by
moving suggested code blocks into appropriate structures of the pattern. We currently
support pipeline and do-all patterns, which frequently appear in applications from a
wide variety of domains. Further patterns will be addressed in future work.

We applied our approach to five applications from the PARSEC 3.0 benchmark suite
[Bienia 2011] and the open-source audio encoder LibVorbis [Overview 2014]. In PAR-
SEC, which is shipped with parallel versions already included, our method successfully
found all implemented pattern instances of the pipeline and do-all. For LibVorbis, which
came without a preexisting parallel version, we implemented the detected patterns
ourselves.

The remainder of the article is organized as follows. After introducing our
dependence-profiling method and the structure of the resulting dependence graph in
Section 2, we discuss our specific interpretation of template matching in Section 3.
In Section 4, we present evaluation results, followed by a review of related work in
Section 5. Section 6 presents our conclusions and sketches future work.

2. BACKGROUND

The techniques employed for the detection of sequential design patterns are based on
UML specifications of patterns and programs. In our approach, which targets parallel
design patterns, the role of UML diagrams is played by data dependence graphs. The
nodes of a dependence graph represent pieces of code and its edges represent data
dependences. The dependences determine whether or not two nodes can be executed
concurrently.

To obtain the dependence graph of a sequential program, we use an enhanced ver-
sion of the dependence profiler DiscoPoP [Li et al. 2013; Li et al. 2015]. The version
used in this study is based on LLVM [Lattner and Adve 2004] and follows a hybrid
(i.e., combined static and dynamic) dependence analysis approach. An overview of the
workflow of DiscoPoP is shown in Figure 1. The source code is converted into LLVM-
IR. The first phase includes static and dynamic analysis of the input program and
produces the program execution tree. This tree includes information about the control
regions and the dependence graph. Although this output is still input sensitive, it is
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Fig. 2. A simple example of a CU graph.

much more efficient than purely dynamic methods. To mitigate the effects of input
sensitivity, we profile each of our test programs with five different inputs and consider
all dependences that occur. DiscoPoP’s dependence profiling has an average slowdown
of 137x and memory consumption of 540MB. The last phase of DiscoPoP is the pattern
detection running on the program execution tree.

The dependence graph, generated dynamically by DiscoPoP, considers the program as
a collection of computational units (CUs) that are connected via true data dependences,
which are the main obstacles to parallelization. This type of dependence graph is
called a CU graph. A CU is a piece of code that follows the read-compute-write pattern.
Figure 2 shows a simple CU graph consisting of two CUs built from a set of instructions
(i.e., source lines). Lines 1 and 2 initialize variables x and y. They are merged into one
INIT node, a special type of CU, since they write to these variables for the first time
without any computation. Lines 3 and 4 read x and perform some computation involving
intermediate variables a and b, and eventually line 5 writes the result back to x. These
lines together form CU,. CU, is created using the same rules, covering the code from
lines 6 to 8. Both CU, and CU, use the data from INIT. This creates a true dependence
between INIT and these CUs. The next section gives detailed insight into how we can
infer parallel design patterns from CU graphs.

3. APPROACH

The input of our pattern detection algorithm is a CU graph mapped onto the dynamic
execution tree of the program. Both are produced by DiscoPoP. Figure 3(a) shows an
execution tree with dependences between nodes. To build the tree, we currently consider
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Fig. 3. (a) An execution tree with dependences. (b) A sample CU graph inside a leaf node. (¢) Adjacency
matrix of the sample CU graph.

only function calls and loops. Each function call or start of a loop forms a new child node.
Different iterations of a loop are merged together into one loop node. The leaf nodes
contain the code of the parent node divided into CUs. Data dependences may exist both
within the same and between different leaf nodes. Data dependences between the CUs
of a leaf node are shown in Figure 3(b). This CU graph can be easily converted into an
adjacency matrix as in Figure 3(c), where each row and column represent a CU and the
corresponding entry in the matrix indicates whether a data dependence exists between
them.

We build upon the template-matching technique introduced by Dong et al. [2008].
There, both the template and target program are represented by vectors. Cross-
correlation between two vectors is used to determine how similar they are. We adapt
this concept for the detection of parallel patterns in CU graphs. The templates used by
Dong et al. are well defined. They are derived from UML diagrams of sequential pat-
terns, which expose a fixed structure with a fixed number of components. On the other
hand, the structure of parallel design patterns is also well defined, but the number of
components in a pattern may vary significantly. For example, the number of stages in
a pipeline may differ, depending on the nature of the application. Hence, our parallel
pattern templates cannot be of fixed length as in the case of sequential patterns. A
parallel pattern matches if certain conditions are met. For example, for a pipeline to
exist, there should be some separable stages inside a repeating code section such as a
loop. Each stage should depend on the data produced by the previous stage. Obviously,
such conditions are less rigid than those derived from fixed UML diagrams, which is
why the size of our pattern templates must be adjustable.

Algorithm 1 shows the overall workflow of our approach. We first look for hotspots in
the input program—sections such as loops or functions that have to shoulder most of
the workload. For each hotspot and pattern, we then create a pattern vector p, whose
length is equal to the number n of CUs in the hotspot. The pattern vector plays the role
of the template to be matched to the program. After that, we create the pattern-specific
graph vector g of the hotspot’s CU subgraph, which represents the part of the program
to which the pattern vector is matched. Vectors p and g are derived from adjacency
matrices reflecting dependences in the pattern and in the CU graph, respectively. As a
next step, we compute the correlation coefficient of the two vectors using the following

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 64, Publication date: December 2014.



Using Template Matching to Infer Parallel Design Patterns 64:5

ALGORITHM 1: Parallel pattern detection

tree = get ExecutionT ree(serial Program)
Hotspots = findHotspots(tree)
for each hin Hotspots do
CU Graph = getCU Graph(h)
n = get Number Of CUs(CU Graph)
for each p in Parallel Patterns do
p = get PatternVector(p, n)
g = getGraphV ector(p, CU Graph)
CorrCoeflh, pl = CorrCoef(p, g)
end
end
return CorrCoef

formula:

> o

pb-8
Izl gl

The correlation coefficient of the pattern vector and the graph vector of the selected
section tells us whether the pattern exists in the selected section or not. The value of the
coefficient is always in the range of [0, 1.0]. A 1.0 indicates that the pattern exists fully,
whereas a 0 indicates that it does not exist at all. A value in between shows the pattern
can exist but with some limitations, which we need to work around. Our tool points
out the dependences that cause the value of the correlation coefficient of a pattern to
be less than 1.0. This helps the programmer to resolve these specific dependences if he
or she wants to implement that pattern.

Our tool not only indicates whether a parallel design pattern has been found in
some section of the program but also shows how the code must be divided to fit the
structure of the pattern. This helps the programmer implement the pattern and create a
parallel version of the sequential input program. One should keep in mind that dynamic
dependence profiling is never completely accurate and some dependences may not be
reported due to the input sensitivity. Though we mitigate the input sensitivity by using
different inputs, the programmer still needs to verify the correctness of the transformed
parallel code. So far, we support the detection of pipeline and do-all patterns, which
are discussed in the following two subsections.

CorrCoef = (1)

3.1. Pipeline

Implementing a pipeline only makes sense if its stages are executed many times. For
this reason, we restrict our search for pipelines to loops, functions with multiple loops,
and recursions. In order to find a pipeline, we first let DiscoPoP deliver the CU graphs
of all hotspots. Because DiscoPoP counts the number of read and write instructions
executed in each loop or function, we currently use this readily available metric as an
approximation of the workload when searching for hotspots. A more comprehensive
criterion, including execution times and workload, will be implemented in the future.
We then compute an adjacency matrix for each hotspot graph, which we call the graph
matrix. For each graph matrix, we create a corresponding pipeline pattern matrix of the
same size, which we call the pipeline matrix. Pipeline matrices encode a very specific
arrangement of dependences expected between CUs. For example, there must be a
dependence chain running through all CUs in the graph because a pipeline consists
of a chain of dependent stages. This specific property helps us to derive the pipeline
pattern vector from the matrix.
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Fig. 4. (a) CU graph for Listing 1. (b) Corresponding graph matrix. (c) A 3x3 pipeline matrix. (d) Graph
vector of graph matrix. (e) A three-stage pipeline vector with weight variable wj ;. (f) The resulting pipeline
vector with w; ;, value 0.50.

To make our approach easier to understand, we explain it using an example: the
bodytrack application from the PARSEC 3.0 benchmark suite [Bienia 2011]. Bodytrack
tracks a 3D pose of a markerless human body with multiple cameras through an image
sequence. Listing 1 shows the main loop of the bodytrack. Inside the loop body, line
2 retrieves an input frame, line 5 processes it, and line 6 writes the output to a file.
Optionally, line 8 writes a bmp image.

For this loop, DiscoPoP returns the CU graph shown in Figure 4(a). The loop body
consists of three CUs: CU,pgare covering lines 2 and 3, CUcgimaze covering line 5, and
CU,utput covering lines 6 through 8. The corresponding graph matrix of size 3x3 is
shown in Figure 4(b).

1 for(i=0; i<num_of_frames; ++i} {
2 if{!pf.Update(i)) {
3 return O;
4 }
5 pf .Estimate(estimate);
6 WritePose(output, estimate);
7 if (outputBMP){
8 outputBMP(estimate) ;
9 }
10 }

Listing 1. Main loop of bodytrack.

According to the dimensions of the graph matrix, we create a pipeline pattern matrix
of size 3x3, as depicted in Figure 4(c). We call it the pipeline matrix. Each row or column
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of this matrix represents a stage in the pipeline and the entries of the matrix represent
dependences between them. Note that a pipeline matrix of any arbitrary number of
stages can be created using the same pattern as shown in Figure 4(c). The entries of
the pipeline matrix have the following specific meaning:

—An “x” means don’t care, that either 1 or 0 can be in its place. These dependences do
not affect pipeline creation.

—A 1 indicates a mandatory dependence. The 1 entries together represent the chain
of dependences along the stages of the pipeline. We call them the chain dependences.

—wj 1, indicates forward dependences in the pipeline. Each individual w;; quantifies
the weight of this forward dependence. A forward dependence exists if a stage S;
of pipeline iteration i depends on the result of a stage S; of the previous iteration
i — 1, with j < k. Hence, a forward dependence adversely affects the execution of the
pipeline because an earlier stage of an iteration has to wait for the results of a later
stage of the previous iteration. We calculate the value of each weight w;; using the
following formula:

(k—J)

 (#stages — 1) 2)

Wik =
#stages represents the total number of stages in the pipeline. The weight decreases
as the distance between two stages with forward dependences increases. Increasing
distance between two stages with a forward dependence implies lower pipeline per-
formance because the next iteration has to wait longer for the result of a later stage
of the previous iteration.

—The 0 in the last column of the first row (encircled) of the pipeline matrix ensures
that the first stage does not depend on the last stage because such a dependence
would effectively serialize the pipeline. To rule out a serial pipeline, we always first
verify that the graph matrix also contains the mandatory 0 in the last column of the
first row.

The next step is to create the graph vector and the pipeline vector from the graph ma-
trix and the pipeline matrix, respectively, and to calculate their correlation coefficient.
To create these vectors, we use the chain and forward dependences. Figure 4(d) shows
the graph vector and Figure 4(e) shows the pipeline vector. These vectors are created
as follows.

We fill the vectors from top to bottom with the exception of the last element using the
entries in chain dependence locations of their corresponding matrices. In both cases,
the last vector element is reserved for forward dependences. If there is no forward
dependence in the graph matrix, the last element of both vectors becomes 0. If there
is at least one forward dependence present in the graph matrix, the last element
of the graph vector becomes 1 and the last element of the pipeline vector becomes
the minimum across all forward-dependence weights in the pipeline matrix whose
corresponding entry in the graph matrix is nonzero.

Figure 4(f) shows the pipeline vector after calculating all weights and choosing the
minimum or zero. In general, the smaller the weight value in the pipeline vector, the
smaller is the value of the correlation coefficient. Finally, we calculate the correlation
coefficient between the two vectors according to Equation (1), which tells us whether
a pipeline exists in Listing 1 or not. We detected a three-stage pipeline pattern in the
loop. The three stages correspond to the three CUs in the CU graph in Figure 4(a).

In our example, the correlation coefficient is 0.96. The value of the correlation coef-
ficient is less than 1.0, showing that the detected pipeline has a forward dependence
that needs to be resolved. Therefore, some additional code restructuring is needed to
implement the pipeline. One way to resolve a forward dependence in a pipeline is to
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int foo(int a){

void foo(int a){ int b = 0:

if(a>0) i
i if(a>0)
foo(a-1); b=foo(a-1);
bar(a);

return bar(b);
’ }

(a) (b)

Fig. 5. Recursive functions: (a) pipeline can be implemented; (b) pipeline cannot be implemented.
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Fig. 6. A pipeline with iterations from different loops in each stage.

merge all the stages in the loop created by the forward dependence. Another solution is
to add synchronization between the stages that are affected by the forward dependence.

The diagonal entries of a graph matrix represent self-dependences of CUs. A self-
dependence of a CU in a loop is a loop-carried dependence. If a pipeline stage does
not have any loop-carried dependence, then multiple instances of this stage can run in
parallel. Such a stage is called a parallel stage. Our graph matrix of the hotspot, for
which a pipeline is detected, readily shows which stages are parallel stages by taking
their diagonal entries into account.

3.1.1. Recursive Function Pipeline. A pipeline may also be created from a recursive func-
tion. The only precondition is that the current recursive invocation does not depend
on the results generated by subsequent recursive invocations, as done in the function
shown in Figure 5(a). The function in Figure 5(b) calls itself and then uses the results
generated by those recursive calls in further computations. The usage of recursion
results prevents a pipeline because we need the next recursive invocation to complete
before the current invocation can continue. To implement a detected pipeline for a re-
cursive function, the code has to be restructured into a loop, which requires additional
code refactoring. In the evaluation section, we show how we detect a pipeline in a
recursive function of one of our test programs.

3.1.2. Multiloop Pipeline. Another special case is a pipeline that is hidden because it
stretches across more than one loop. In such a scenario, one iteration of a loop depends
on one or more iterations of a preceding loop. This can be easily transformed into a
pipeline by mapping iterations of different loops onto different stages of the pipeline.
Figure 6 shows a pipeline covering multiple loops. To detect such multiloop pipelines,
we examine the dependence relation between the iterations of these loops. If it is a one-
to-one relation (i.e., the ith iteration of the second loop depends only on the jth iteration
of the first loop) or a linear relation, then we can easily transform such loops into a
pipeline. Currently, relations between the iterations of different loops are determined
manually. We aim to derive this information automatically in future versions.
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1 for{i=0; i<num; ++i}{

2 InitializeDensitiesAndForces(i);
3 }

4 for{i=0; i<num; ++i}{

5 ComputeDensities(i);
6 }

7 for{i=0; i<num; ++i}{

8 ComputeDensities2(i);
9 }
10 for{i=0; i<num; ++i}{

11 ComputeForces (i) ;
12 }

Listing 2. Loops in function ComputeForce () of fluidanimate.

For the sake of simplicity, we currently consider only loops spread across the same
function. Listing 2 contains the loops in function ComputeForce () of the PARSEC bench-
mark fluidanimate, for which such a relation can be shown. Each loop in the function
is treated as a CU and a graph matrix reflecting the dependences between these loops
is created. After this point, we proceed as usual.

3.2. Do-All

A loop can be parallelized according to the do-all pattern if there are no loop-carried
or interiteration dependences. A forward or self-dependence is always loop carried, as
the control flow within a loop iteration moves in a forward direction, which is why
dependences within the same iteration must point backward. Note that inner loops
in loop nests, which may reverse the control-flow direction whenever a new inner
iteration starts, are treated separately. The absence of forward or self-dependences is
easy to verify based on the graph matrix, whose upper triangle shows all forward and
self-edges (encircled in Figure 7).

Of course, there may also exist loop-carried dependences in backward edges of the
graph matrix. However, to reliably distinguish them from intraiteration dependences,
our dependence profiler would have to record the iteration number along with each
memory access, substantially increasing its memory overhead. On the other hand,
loop-carried dependences in a backward direction that are not accompanied by depen-
dences in a forward direction in the same loop are very rare. Basically, the absence of
forward and self-dependences in a loop is a good indicator of the absence of loop-carried
dependences. For this reason, we decided to refrain from the costly classification of
backward dependences into loop carried or not loop carried.

The pattern vector p for a do-all pattern is of length equal to the number of elements
of the upper triangle of the CU matrix. All elements in p are initialized with 1. All
elements of the upper triangle of the graph matrix are taken as elements of the graph
vector g, with their values being reversed from 0 to 1 and vice versa. Figure 7 shows
some loop graphs along with their graph vectors g.

Once we have determined the graph vector of our target loop, we calculate the
correlation coefficient according to Equation (1). If the correlation coefficient is 1.0, the
loop is a do-all loop. A correlation coefficient of less than 1.0 means that the loop cannot
be parallelized with the do-all pattern in its current form due to some loop-carried
dependences. The closer the value of the correlation coefficient is to 1.0, the fewer the
number of loop-carried dependences. These loop-carried dependences are highlighted
in the output of the tool and the programmer can try to resolve them manually, if the
parallel implementation using the do-all pattern seems profitable.
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Fig. 7. Example of loops for do-all detection: (a) do-all loop; (b) no do-all loop due to self-edge; (c) no do-all
loop due to forward edge.

4. EVALUATION

We tested our approach using five shared-memory applications from the PARSEC 3.0
benchmark suite [Bienia 2011] and the open-source audio encoder LibVorbis [Overview
2014]. Each of the five PARSEC programs is shipped with a sequential and a parallel
version. We chose bodytrack, dedup, and ferret because their parallel versions contain
pipelines. We chose blackscholes because it is parallelized using the do-all pattern.
Fluidanimate was included as a demonstrator of multiloop pipelines. The time and
memory consumption of the pattern detection heavily depends on the depth of the
program execution tree. On average, the profiling caused a slowdown of 137x, while the
pattern detection caused a slowdown of 62x. The pattern detection consumed 152.95MB
of memory on average for all six applications compared to 540MB consumed by the
profiler. The pattern detection was applied to all hotspots in these six applications.
Table I summarizes the hotspots found in our test cases.

4.1. Pipeline

We tested all of the six candidate programs for the presence of pipeline patterns.
We implemented the detected pipelines in all the programs. We also compared the
results obtained for bodytrack, dedup, and ferret with their pipeline versions, which
are already available. The speedups of the detected pipeline versions were measured
on an Intel Xeon X5670 CPU with six cores and hyperthreading enabled. There were no
pipelines detected in blackscholes. Table II gives an overview of the detected pipelines
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Table I. Hotspots in Test Cases

Application LOC Hotspots | Execinst%*
bodytrack 7,698 7 88.62%
blackscholes 914 2 99.75%
dedup 3,347 2 99.88%
fluidanimate 3,987 4 99.54%
ferret 11,263 2 99.96%
LibVorbis 54,743 2 99.80%

*Percentage of executed read and write instructions
covered by the identified hotspots.

Table II. Detected Pipelines with Correlation Coefficients

Pipelines Corr Pipelines Pipelines
Application Detected Coeff Implemented | in PARSEC
bodytrack 1 pl: 0.96 1 1
blackscholes 0 NA 0 0
dedup 2 pl: 1.00 2 1
p2: 1.00
fluidanimate 1 pl: 0.94 1 0
ferret 2 pl: 1.00 2 1
p2: 1.00
LibVorbis 2 pl: 1.00 1 NA
p2: 1.00
9
8
7
6
5
Speedup
4
3
2
| —
. -
bodytrack dedup ferret fluidanimate libVorbis

Fig. 8. Average speedups of pipeline implementations in all applications.

64:11

along with their correlation coefficients, while Figure 8 shows the average speedups
achieved after implementing the detected pipelines. All the speedups were measured

using 12 threads.

4.1.1. Bodytrack. In one of bodytrack’s hotspots, we detected a pipeline pattern with
a correlation coefficient of 0.96. Additional restructuring of the code was needed. It is
the loop shown in Listing 1, which iterates over all input frames to track the body of
a person. It covers 88.62% of the executed read and write instructions. As shown in
Figure 4, the pipeline consists of three stages. CU,pqaze updates a frame, CU.gtipmaze cal-
culates estimates, and CU, ;s Writes the data to a file. Due to the forward dependence
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-------- Refine <-------3 Deduplicate
— —
I
I
I
|
Reorder fF------- | Compress
— —

Fig. 9. Five-stage pipeline in the parallel version of dedup.

between CU,stimate and CU,uspue, We analyzed the code and decided to merge these two
CUs into a single stage, forming a two-stage pipeline. We achieved an average speedup
of 1.2 for this implementation because both stages of the pipeline were serial stages.

The pipeline implementation of bodytrack has indeed been implemented with two
stages: an update stage, which reads the data, and an estimate and output stage.
This example demonstrates that a forward dependence does not necessarily present
an insurmountable obstacle to the formation of a pipeline. Sometimes, a combination
of merging stages and shifting the responsible instructions into other stages does the
trick.

4.1.2. Dedup. Pipeline patterns were reported in two hotspots of dedup. These hotspots
are the two nested loops shown in Listing 3. They cover almost all of the executed
read and write instructions. In the outer loop, we found a three-stage pipeline with
readInput () and Fragment () as the first two stages and the entire inner loop as the last
stage. The correlation coefficient of this pipeline is 1.0. We detected another pipeline,
this time with four stages, in the inner loop: Refine (), Deduplicate (), Compress (), and
Reorder (). The correlation coefficient of the second pipeline is also 1.0. We implemented
both pipelines nested into one another. An average speedup of 2.3 was achieved. All of
the stages detected were serial stages.

while{!EQOF}{
readInput (Buffer);
Fragment (Buffer) ;

1

2

3

4

5 while{Blocks = Split(Buffer)}{
6 Refine (Block) ;

7 Deduplicate(Block) ;
8 Compress (Block) ;

9 Reorder (Block) ;

0
1

}
Listing 3. Main hotspot loop of dedup.

The existing parallel version of dedup in PARSEC runs a flat five-stage pipeline,
which is shown in Figure 9. It covers the entire loop nest from Listing 3 except for
reading the input at the entry of the outer loop. Instead of reading it periodically, the
parallel version reads the input in one piece at program start. The remaining stages
we detected in dedup match those of the benchmark’s parallel version exactly.
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Stage1: Stage2:
Init Densities & Forces Compute Densities

S — ’,—

Stage4: | _____ > Stage3:
Compute Forces Compute Densities2
T —————————— e ————————————

Fig. 10. Self-implemented pipeline in fluidanimate.

The speedups of our own nested-pipeline version and of the flat-pipeline version
from the benchmark were almost the same. The reason is that most of the work is
done by the inner loop with the loop-carried dependence, which makes it a bottle-
neck. So the decision of creating a nested versus a flat pipeline does not affect the
speedup.

4.1.3. Fluidanimate. In fluidanimate, the reported pipeline consists of multiple loops in
the function ComputeForce (), consuming almost 90% of the read and write instructions.
Listing 2 shows the pseudo-code of ComputeForce(). Its correlation coefficient of 0.94
is slightly less than 1.0 because of a forward dependence found between the loops at
lines 4 and 10 of Listing 2. As discussed in the previous section, we need to examine
possible cross-loop dependences to decide whether a multiloop pipeline exists. We an-
alyzed the code for cross-loop dependences and discovered that each iteration of both
the second and the fourth loop in Listing 2 changes the densities of the current cell and
its neighbors, which causes the forward dependence. However, it was found that the
cell update affects only those neighbors in the grid whose index is less than the index
of the current cell. So running a loop from the highest to the lowest index would solve
this problem.

Based on this workaround concept, we designed our pipeline for ComputeForce().
The only problem with this implementation was that stage 4 had to wait until all
the neighboring cells of the current cell had passed through stage 2, decreasing the
efficiency of the pipeline. In Figure 10, this is illustrated by the dependence between
the second and the fourth stage. This drawback had already been anticipated by the
previously mentioned forward dependence in the sequential version of ComputeForce ()
between lines 4 and 10 of Listing 2. We achieved an average speedup of about 1.5.
Note that merging the stages 2, 3, and 4 due to the forward dependence would not
improve the speedup because merging these three stages would create a highly im-
balanced pipeline. The parallelization of fluidanimate available in PARSEC is done
using data parallelism. Perhaps for this reason, there is no pipeline in that parallel
version.

4.1.4. Ferret. Ferret traverses an image database and reports all images that appear
similar to an input image. The serial version of ferret searches recursively through all
subdirectories of an input directory. Listing 4 shows the workflow of ferret. Functions
scan_dir() and dir_helper () traverse the directory tree, while do_query() compares
images and writes its findings to a file.

We found two hotspots in ferret. scan_dir(), the first one, checks the entries of a
directory and calls do_query() if an image was found or calls dir_helper () to proceed
in child directories. We found a two-stage pipeline in this function, which is depicted in
Figure 11(a). The correlation coefficient of this pipeline is 1.0. After carefully examining
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check_validity() fe----------- giffg;m))
——— ——
@
load_image() |w-----| segment) |w---- extract()

i

output() ———- query() --- - get_rank()
— — —
(b)
check validity()
dir_helper() fe----1 segment() |e---- extract()
load_image()

__*

output() —— - - query() ---- > get_rank()

(©

Fig. 11. Pipeline in ferret: (a) pipeline detected in scan_dir(); (b) pipeline detected in do_query();
(c) pipeline implemented in PARSEC.

the code, we decided that dir_helper () should be moved to stage 1. This is because it
calls scan_dir () again, which marks the start of the next pipeline iteration.

do_query (), the second hotspot, is nested inside the first one and covers 96% of
the total read and write instructions. There, we found a six-stage pipeline with cor-
relation coefficient of 1.0, which is illustrated in Figure 11(b). We implemented the
nested pipelines by refactoring the recursion into iterations and achieved a speedup
of 6.14.

We compared the reported pipelines with the parallel implementation in PARSEC.
The PARSEC version features only one pipeline, which is shown in Figure 11(c). It
has six stages and is essentially a combination of the two we detected, similar to our
findings for dedup. The first stage of the benchmark’s implemented pipeline merges
the entry stages of the two detected pipelines. This is advisable because their workload
is so small. The remaining implemented stages correspond to the last five stages of the
second pipeline we found.

The difference between the speedups of the two implementations with single flat
and nested pipelines, respectively, was negligible. The reason was the same as in the
case of dedup. This comparison demonstrates that our division into CUs is not always
optimal. To improve the load balance between pipeline stages, future versions of our
tool will merge the CUs of adjacent pipeline stages if appropriate.

4.1.5. LibVorbis. LibVorbis [Overview 2014] is an audio encoding and decoding library,
which converts wave files into compressed Ogg files. We used version 1.3.3 for our
study. We analyzed a client application distributed alongside the library, which uses
the library for conversion purposes. We found two hotspots in the form of two loops with
one of them nested inside the other—very similar to the code in Listing 3. In the outer
loop, we detected a pipeline with two stages: the first one for data input and the second
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Inner pipeline

(b)

Fig. 12. Implemented pipelines of LibVorbis: (a) nested and (b) merged.

1 scan_dir( ent, path){

2 check_validity(ent, path);
3 if (IS_FILE(name)){

4 do_query (name) ;

5 }

6 else if (IS_DIR(name)){

7 dir_helper(ent, path);
8 }

9 }

10

11 dir_helper( ent, path){

12 dir = get_list(path+ent);
13 while (1) {

14 file = dir.get_next();
15 if (file) {

16 scan_dir(file.name, dir);
17 }

18 elseq

19 break;
20 }
21 }
22 }
23
24 do_query (name) {
25 image = load_image(name);
26 mask = segment (image) ;
27 dataset = extract(segment);
28 result = query(dataset);
29 rank = get_rank(result);
30 output(file, name, result, rank)
31 }

Input < ----
Transform |&----- Output
—
(a)
Input < ------ Transform f<&----- Output
— —— ——

Listing 4. Pseudo-code of ferret.

64:15

one covering the entire inner loop. In the inner loop, we detected another pipeline with
two stages, the first one for the transformation of the data and the second one for their
output. The correlation coefficient of both pipelines was 1.0.

We decided to implement two parallel versions: one with nested pipelines and one
with the two pipelines merged into a single flat three-stage pipeline, as shown in
Figure 12(a) and 12(b), respectively. The Transform stage in both cases was detected
as a parallel stage. Again, the comparison of the speedups of the two implementations
followed the results for dedup and ferret. The speedups of the two implementations
were almost identical. The reason is that the Transform stage consumes most of the
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Table Ill. Detected Do-All Loops with a Correlation
Coefficient of 1.0

Do-All Do-All Detected by
Application Detected | Implemented | Intel ICC
bodytrack 6 6 0
blackscholes 2% 1 2
dedup 0 0 0
fluidanimate 0 0 0
ferret 0 0 0
LibVorbis 0 0 0

*One do-all loop is not an intrinsic part of blackscholes.

Table IV. Detected Hotspot Loops with a Do-All
Correlation Coefficient of Less Than 1.0

Hotspot Corr
Application Loops Coeff
bodytrack 1 d1: 0.98
blackscholes 0 NA
d1: 0.99
dedup 2 d2: 0.94
d1: 0.98
fluidanimate 2 d2: 0.98
ferret 0 NA
d1: 0.96
LibVorbis 2 d2: 0.70

runtime in both cases. With three different input files, we achieved an average speedup
of 8.4.

4.2. Do-All

Table III summarizes the the results of do-all pattern detection, where the correlation
coefficient was 1.0. We compared the identified do-all patterns with the parallel im-
plementations in PARSEC and with the do-all loops detected statically by the Intel
C compiler (ICC) version 14.0.3. We did not find any profile-guided tool available to
compare our results with. We could not find any do-all loops in hotspots of dedup, flu-
idanimate, ferret, and LibVorbis with a correlation coefficient of 1.0. ICC found do-all
loops only in blackscholes. Table IV shows the hotspot loops whose correlation coef-
ficients for do-all were less than 1.0. The value of the do-all correlation coefficient
depends on the number of loop-carried dependences and the total number of CUs in a
loop. The detailed results are presented next.

4.2.1. Bodytrack. We classified six loops in bodytrack as do-all loops, each with a corre-
lation coefficient of 1.0. All of these loops exist in functions called from the loop shown in
Listing 1. They are specified in the functions FlexFilterRowV (), FlexFilterColumnV(),
GradientMagThreshold(), CalcWeights(), GenerateNewParticles(), and GetObserva-
tion(). All of these six loops are parallelized in PARSEC according to the do-all pattern.
No loop other than these six is parallelized. This means we reported neither false neg-
atives nor false positives. ICC did not find any do-all loops in bodytrack.

Our approach can detect parallel patterns at different levels of the hierarchy in
the program execution tree. Detection of a combination of more than one parallel
pattern at the same level would need specific templates for each combination. That
new templates need to be defined for each combination of patterns is a limitation of the
current approach, which will be addressed in future work.
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The correlation coefficient of do-all detection for the loop in Listing 1 was 0.98. It was
due to two loop-carried dependences, as shown in Figure 4(a). The first dependence was
because CU,stimate uses the values generated by CU,ypu in the previous stage and the
second was a self-dependence of CU,yp:. We could not resolve these dependences to
make this loop a do-all loop. This shows that loop-carried dependences can sometimes
not be resolved, even if their number is low. A correlation coefficient close to 1.0 does
not necessarily mean that the loop can be easily converted into a do-all loop.

4.2.2. Blackscholes. In blackscholes, we found two nested loops with a correlation co-
efficient of 1.0, together covering 99.75% of the total read and write instructions. A
closer investigation of the code revealed that the outer loop is not an intrinsic part of
blackscholes, but rather a wrapper in PARSEC that runs the blackscholes algorithm
a specified number of times on the same input. This is why it was not parallelized
in PARSEC, although it could have been in principle. The inner loop is shown in
Listing 5. It is the main blackscholes loop, which calculates the value of an option.
The parallel implementation in PARSEC follows the do-all pattern. ICC also found the
same loops to be do-all loops. We did not find any loop in blackscholes with a correlation
coefficient of less than 1.0.

1 for (i=start; i<end; i++) {

2 price = BlkSchlsEqEuroNoDiv( i, 0);
3 prices[i] = price;

4 }

Listing 5. Do-all loop in blackscholes.

4.2.3. Dedup. We could not find any hotspot loops in dedup with a correlation coeffi-
cient of 1.0. ICC also failed to find any do-all loops in dedup. The two nested hotspot
loops for which we implemented pipelines received a correlation coefficient of 0.99 and
0.94, respectively.

The outer loop could not be converted into a do-all loop because of the serial input and
one variable causing loop-carried dependences. This dependence could not be resolved.
Similarly, the inner loop could not be converted to do-all due to the splitting of input
buffer in each iteration depending on the split from the previous iteration. Also, the
output of results in this loop was serial.

4.2.4. Fluidanimate. Two hotspot loops in the ComputeForce() function had a do-all
correlation coefficient of 0.98. Because both of these loops update the densities of
neighboring cells in multiple iterations, these loops could not be parallelized using the
do-all pattern.

4.2.5. LibVorbis. The do-all search in LibVorbis produced results similar to the one
for dedup. The two nested hotspot loops that were identified as pipelines were also
checked for do-all patterns and correlation coefficients of 0.96 and 0.70 were computed.
The outer loop had loop-carried dependences due to the serial file input and some
internal flags of the LibVorbis library. These dependences were not resolvable, as the
LibVorbis library uses these flags for maintaining its internal state. The inner loop also
depended on the internal flags of the LibVorbis library. Moreover, the file output was
sequential. These dependences could not be resolved to realize a do-all pattern in the
loop.

The evaluation demonstrates that our approach can successfully detect parallel pat-
terns. Patterns other than pipeline and do-all can also be detected using template
matching. For instance, in the case of the map/reduce pattern, we could construct a
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template vector that looks for the absence of forward dependences in a CU matrix and
allows self-dependences for the reduction operations in the loops. Similarly, in the case
of the master/worker pattern, where each worker task is usually independent of other
tasks, we could construct a template vector that looks for independence between CUs
of a region and classifies them as worker tasks. The detection of these patterns and
others will be added to the tool in future.

5. RELATED WORK

In the field of software engineering, the detection of design patterns is being widely
pursued. Major attention is paid to the detection of sequential design patterns in UML
diagrams of existing programs. For this purpose, Qiu et al. [2010] use subgraph discov-
ery via graph isomorphism. First, they convert UML diagrams of both the application
under study and the pattern into abstract syntax graphs. Then, they use a finite state
machine over these graphs to detect the pattern in the application.

While Hayashi et al. [2008] use meta-patterns to infer the sequential patterns under-
lying the design of a program, Tsantalis et al. [2006] use matrix similarity algorithms
on adjacency matrices. However, Dong et al. proved that the approach of Tsantalis et al.
is unable to distinguish between multiple design-pattern instances in the program’s
design. To eliminate this drawback, they proposed an improvement based on template
matching, a method well known from the area of digital image processing. To the best of
our knowledge, there is no previous work on parallel pattern detection using template
matching techniques.

During the last few years, the automatic discovery of parallelism in sequential pro-
grams has also been the subject of research projects. Raman et al. [2012] extract the
parallelism from sequential code directly at compile time. A drawback of their approach
is that they require programmers to manually analyze the code and include hints for
possible parallelism into the program prior to compilation.Vandierendonck et al. [2010]
go one step further and give the hints to the programmer on where to put the hints
in sequential code. Again, the programmer has to approve the hints proposed by their
compiler. Intel Advisor [Labs 2014] points out the hotspots in the serial code by pro-
filing and helps the programmer to annotate and see the expected speedups without
changing the code. Campanoni et al. [2012] extract parallelism by running iterations
of a loop on separate threads, fulfilling loop-carried dependences using signals between
threads. They also propose an architectural improvement to make their approach more
feasible [Campanoni et al. 2014]. Our approach tries to detect parallel patterns in se-
quential code and suggests a solution without any special architectural requirements
other than those commonly satisfied.

Rul et al. [2010] have developed a tool that follows an approach very close to
ours. Their profiler can identify loop-carried dependences. Their profiling usually lasts
overnight, which is very high compared to the slowdown caused by DiscoPoP. A post
analysis of the dependence graphs of the loops is done to detect pipelines. Only loops
that contain function calls are analyzed, whereas our approach searches all kinds of
loops and functions for parallel patterns. Similarly, Kremlin [Garcia et al. 2011] can
detect do-all loops with high precision, but it lacks the ability to detect any other
pattern.

DOMORE [Huang et al. 2013] can detect dependences across loop iterations
dynamically and synchronize them when needed. Tournavitis et al. introduced
a compiler that can identify parallelism using dependence analysis [Tournavitis
et al. 2009; Wang et al. 2014]. Initially, they only sought do-all parallelism in loops.
Later, they included pipeline detection in the compiler [Tournavitis and Franke 2010].
Compared to our approach, theirs is much less generic when it comes to the addition
of new design patterns. For each new design pattern, they need to integrate a separate
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detection technique into their compiler. Our method, in contrast, can handle the inclu-
sion of new patterns with minimal overhead, as only the new pattern’s template needs
to be added. The template-matching algorithm remains the same for all the patterns.

Ketterlin and Claus [2012] developed a tool named Parwiz, which profiles the depen-
dences of the input program and then points the programmer to potential parallelism.
At the moment, Parwiz supports only do-all parallelism. Zhang et al. [2009] devel-
oped Alchemist, which profiles dependences and identifies code regions that can be run
in parallel. Their approach lacks the detection of parallel patterns. Molitorisz [2013]
tracks control dependences to discover master/worker patterns, mainly focusing on
dependences between function calls.

Raman et al. [2008] proposed a technique called parallel stage decoupled soft-
ware pipelining, which converts programs with pointer-based loops into pipelines.
Huang et al. [2010] showed that the approach of Raman et al. can have more par-
allelism at each stage of the detected pipeline based on the dependence analysis
of each stage. The pipeline detected by our approach can also be enhanced using
the same techniques as Huang et al. Rul et al. [2007] uses the approach of Raman
et al. on the level of functions. Lee et al. [2013] transform user-annotated code into
pipelines using Cilk. Given that our approach can identify the code locations of pipeline
stages automatically, it could help users of the approach of Lee et al. to quickly find the
places to annotate. Similarly, the work of Kambadur et al. [2012] can also be applied to
the parallelized version developed after applying our approach to find further hotspots
and parallelizing these code regions.

6. CONCLUSIONS AND FUTURE WORK

In this article, we described how to infer potential parallelization patterns from se-
quential programs. To this end, we adapted the idea of template matching, which is
already employed to detect sequential design patterns in UML diagrams. A specific
challenge we addressed is the—in comparison to UML diagrams—Iless rigid structure
of parallel design patterns. Our approach identifies those parts of the code that can be
parallelized and shows how to map them onto the pattern structure, enabling a quick
implementation of the pattern. We believe that this will provide significant help for
organizations facing the challenge of parallelizing large numbers of legacy programs.
In the future, we plan to add further patterns such as master/worker, map/reduce, or
workpile to our tool’s pattern repository. We also intend to estimate speedups for each
detected pattern. In this way, the programmer may become able to choose among several
pattern alternatives for the same piece of code, taking their correlation coefficients and
expected speedups into account. Ultimately, however, our vision is the pattern-guided
semiautomatic transformation of sequential code into a parallel version.
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