
Mass-producing insightful performance models
Alexandru Calotoiu

German Research School
for Simulation Sciences

RWTH Aachen University
Aachen, Germany

a.calotoiu@grs-sim.de

Torsten Hoefler
ETH Zurich

Zurich, Switzerland
htor@inf.ethz.ch

Felix Wolf
German Research School
for Simulation Sciences

RWTH Aachen University
Aachen, Germany
f.wolf@grs-sim.de

Abstract—Many parallel applications suffer from latent per-
formance limitations that may prevent them from scaling to larger
machine sizes. Often, such scalability bugs manifest themselves
only when an attempt to scale the code is actually being made—
a point where remediation can be difficult. However, creating
performance models that would allow such issues to be pinpointed
earlier is so laborious that application developers attempt it at
most for a few selected kernels, running the risk of missing
harmful bottlenecks. By automatically generating empirical per-
formance models for each function in the program, we make this
powerful methodology easier to use and expand its coverage. This
article gives an overview of the method and assesses its potential.

I. INTRODUCTION

When scaling their codes to larger numbers of processors,
many HPC application developers face the situation that all of
a sudden a part of the program starts consuming an excessive
amount of time. Unfortunately, discovering latent scalability
bottlenecks through experience is painful and expensive. Re-
moving them requires not only potentially numerous large-
scale experiments to track them down, but often also major
code surgery in the aftermath. Since such problems usually
emerge at a later stage of the development process, depen-
dencies between their source and the rest of the code that
have grown over time can make remediation even harder.
One way of finding scalability bottlenecks earlier is through
analytical performance modeling. An analytical scalability
model expresses the execution time or other resources needed
to complete the program as a function of the number of
processors. Unfortunately, the laws according to which the
resources needed by the code change as the number of proces-
sors increases are often laborious to infer and may also vary
significantly across individual parts of complex modular pro-
grams. This is why analytical performance modeling—in spite
of its potential—is rarely used to predict the scaling behavior
before problems manifest themselves. As a consequence, this
technique is still confined to a small community of experts.

II. AUTOMATED PERFORMANCE MODELING

The primary objective of our approach is the identification of
scalability bugs. A scalability bug is a part of the program
whose scaling behavior is unintentionally poor, that is, much
worse than expected. As computing hardware moves towards
exascale, developers need early feedback on the scalability
of their software design so that they can adapt it to the
requirements of larger problem and machine sizes. Our method
can be applied to both strong scaling and weak scaling runs.
In addition to searching for performance bugs, the models
our tool produces also support projections that can be helpful
when applying for the compute time needed to solve the
next larger class of problems. Finally, because we model not

only execution time but also requirements, our results can
assist in software-hardware co-design or help uncover growing
wait states. Note that although our approach can be easily
generalized to cover many programming models, we focus
on message passing programs. For a detailed description, the
reader may refer to [1].

The input of our tool is a set of performance measurements
on different processor counts {p1, . . . , pmax} in the form of
parallel profiles. We call these regions kernels because they
define the code granularity at which we generate our models.
The output of our tool is a list of program regions, ranked
either by their predicted execution time at a target scale
of pt > pmax processors or by their asymptotic behavior.
Figure 1 gives an overview of the different steps necessary
to find scalability bugs. To ensure a statistically relevant
set of performance data, profile measurements may have to
be repeated several times. Once this is accomplished, we
apply regression to obtain a coarse performance model for
every possible program region. These models then undergo
an iterative refinement process until the model quality has
reached a saturation point. Finally, if the granularity of our
program regions is not sufficient to arrive at an actionable
recommendation, the kernels under investigation can be further
refined via more detailed instrumentation.

A. Model generation

Model generation forms the core of our method. When gen-
erating performance models, we exploit the observation that
they are usually composed of a finite number n of predefined
terms, involving powers and logarithms of p (or some other
parameter):

f(p) =

n∑
k=1

ck · pik · logjk2 (p)

This representation is, of course, not exhaustive, but works
in most practical scenarios since it is a consequence of how
most computer algorithms are designed. We call it the perfor-
mance model normal form (PMNF). Moreover, our experience
suggests that neither the sets I, J ⊂ Q from which the
exponents ik and jk respectively are chosen from, nor the
number of terms n have to be arbitrarily large or random
to achieve a good fit. Thus, instead of deriving the models
through reasoning, we only need to make reasonable choices
for n, I , and J and then simply try all assignment options one
by one. A possible assignment of all ik and jk in a PMNF
expression is called a model hypothesis. Trying all hypotheses
one by one means that for each of them we find coefficients ck



Performance
measurements

Statistical
quality control

Performance
profiles

Performance
profiles

Performance
profiles

Model
generation

Model
refinement

Scaling
models
Scaling
models
Scaling
models

Accuracy
saturated?

Performance
extrapolation

Ranking
of kernels

Ranking
of kernels

Ranking
of kernels

Kernel
refinement

Comparison
with user

expectations

Yes

No

Fig. 1: Performance modeling workflow. Solid boxes represent actions or transformations, and banners their inputs and outputs.
Dashed arrows indicate optional paths taken after user decisions.

with the best fit. Then we apply cross-validation [2] to select
the hypothesis with the best fit across all candidates.

III.RELATED WORK

Analytical performance modeling has a long history. Early
manual models showed to be very effective to describe many
qualities and characteristics of applications, systems, and even
entire tool chains [3], [4], [5], [6], [7]. Hoefler et al. estab-
lished a simple six-step process to guide manual performance
modeling [8], which served as a blueprint for our automated
workflow. Assertions and source-code annotations support de-
velopers in the creation of analytical performance models [9],
[10], [11].

Various automated modeling methods exist. Many of these
tools focus on learning the performance characteristics au-
tomatically using various machine-learning approaches [12],
[13]. Zhai, Chen, and Zheng extrapolate single-node per-
formance to complex parallel machines using a trace-driven
network simulator [14] and Wu and Müller extrapolate traces
to predict communications at larger scale [15]. Carrington et al.
choose a model from a set of canonical functions to extrapolate
traces of applications at scale [16].

IV.ASSESSMENT

Challenges addressed. If developers decide to model the
scalability of their code today, they first apply both intuition
and tests at smaller scales to identify so-called kernels, which
are those parts of the program that are expected to dominate
its performance at larger scales. This step is essential because
modeling a full application with hundreds of modules manually
is not feasible. Then they apply reasoning in a time-consuming
process to create analytical models that describe the scaling
behavior of their kernels more precisely. In a way, they have
to solve a chicken-and-egg problem: to find the right kernels,
they require a pre-existing notion of which parts of the program
will dominate its behavior at scale—basically a model of their
performance. We are developing a novel tool that eliminates
this dilemma. Instead of modeling only a small subset of
the program manually, we generate an empirical performance
model for each part of the target program automatically,
significantly increasing not only the coverage and insight of
the scalability check but also its speed.

Maturity. We analyzed real-world applications such as
climate codes, quantum chromodynamics, fluid dynamics,
simulation of the brain and more. We were able to identify
the most likely bottlenecks in eight real-world applications,
totaling over 10,000 kernels and over 200,000 lines of code.

Uniqueness. The main advantage of the approach lies in

the ability to obtain human readable models for each part of
the application using only a standard profiling infrastructure
and without the need to generate traces. The extremely useful
insights that can be gained for comparatively low effort make
our approach unique.

Novelty. The novelty of the approach stems from the
automation of the modeling process using statistical methods,
allowing entire applications to be modeled at a very fine
level of granularity. We leverage the following assumptions
to achieve our goals:

1) The space of the function classes underlying perfor-
mance models is usually small enough to be searched
by a computer program. An iterative refinement pro-
cess maximizes both the efficiency of the search and
the accuracy of our models.

2) We abandon model accuracy as the primary success
metric and rather focus on the binary notion of
scalability bugs.

3) We create requirements models alongside execution-
time models. Their comparison can give a clue to
the nature of a scalability problem. Moreover, re-
quirements models are often easier to obtain and well
suited for extreme-scale projections.

Applicability. Our approach can be used to model the
effect of any parameter deemed important to the behavior
of an application, such as the problem size, the number of
processes, or the accuracy of the solution. Time is not the only
dimension that is modeled. Requirements such as the number
of floating point operations, memory accesses, number and size
of messages sent are also modeled.

Effort. We already have a working prototype implemen-
tation of our method. We plan to expand its capabilities and
release it to the public in the near future. Given that our tool
relies on standard performance-measurement infrastructure, the
extra software that we developed is so lightweight that it is
economically feasible to provide it in production-level quality.

V. CONCLUSION

The lightweight tool we created can be used to generate
useful scalability models for arbitrarily complex codes. Tests
on a range of applications confirmed models reported in the
literature in cases where such models existed, but also helped
uncover a number of previously unknown scalability issues in
other cases. Work is underway refining the process to find a
good balance between what can be realistically measured while
still allowing useful conclusions.



REFERENCES

[1] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proc. of the ACM/IEEE Conference on Supercomputing (SC ’13), 2013,
p. 45. [Online]. Available: http://doi.acm.org/10.1145/2503210.2503277

[2] R. R. Picard and R. D. Cook, “Cross-validation of regression models,”
Journal of the American Statistical Association, vol. 79, no. 387, pp.
575–583, 1984. [Online]. Available: http://www.tandfonline.com/doi/
abs/10.1080/01621459.1984.10478083

[3] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman,
and M. Gittings, “Predictive performance and scalability modeling
of a large-scale application,” in Proc. of the ACM/IEEE Conference
on Supercomputing (SC ’01), 2001, p. 37. [Online]. Available:
http://doi.acm.org/10.1145/582034.582071

[4] M. M. Mathis, N. M. Amato, and M. L. Adams,
“A general performance model for parallel sweeps on
orthogonal grids for particle transport calculations,” College
Station, TX, USA, Tech. Rep., 2000. [Online]. Available:
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail\
&id=oai%3Ancstrlh%3Atamucs%3Ancstrl.tamu cs%2F%2FTR00-004

[5] S. Pllana, I. Brandic, and S. Benkner, “Performance modeling and
prediction of parallel and distributed computing systems: A survey of
the state of the art,” in Proc. of the 1st Intl. Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), 2007, pp. 279–284.
[Online]. Available: http://dx.doi.org/10.1109/CISIS.2007.49

[6] E. L. Boyd, W. Azeem, H.-H. Lee, T.-P. Shih, S.-H. Hung, and E. S.
Davidson, “A hierarchical approach to modeling and improving the
performance of scientific applications on the ksr1,” in Proc. of the
Intl. Conference on Parallel Processing (ICPP), 1994, pp. 188–192.
[Online]. Available: http://dx.doi.org/10.1109/ICPP.1994.30

[7] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in Proc. of the ACM/IEEE Conference
on Supercomputing (SC ’03), 2003, p. 55. [Online]. Available:
http://doi.acm.org/10.1145/1048935.1050204

[8] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance
modeling for systematic performance tuning,” in State of the

Practice Reports (SC ’11), 2011, pp. 6:1–6:12. [Online]. Available:
http://doi.acm.org/10.1145/2063348.2063356

[9] N. R. Tallent and A. Hoisie, “Palm: easing the burden of analytical
performance modeling,” in Proc. of the International Conference
on Supercomputing (ICS), 2014, pp. 221–230. [Online]. Available:
http://doi.acm.org/10.1145/2597652.2597683

[10] K. Spafford and J. S. Vetter, “Aspen: a domain specific language
for performance modeling,” in Proc. of the ACM/IEEE Conference
on Supercomputing (SC ’12), 2012, p. 84. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2389110

[11] J. S. Vetter and P. H. Worley, “Asserting performance expectations,”
in Proc. of the ACM/IEEE Conference on Supercomputing (SC
’02), 2002, pp. 1–13. [Online]. Available: http://doi.acm.org/10.1145/
762761.762809

[12] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An
approach to performance prediction for parallel applications,” in Proc.
of the 11th Intl. Euro-Par Conference, 2005, pp. 196–205. [Online].
Available: http://dx.doi.org/10.1007/11549468 24

[13] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz,
K. Singh, and S. A. McKee, “Methods of inference and learning for
performance modeling of parallel applications,” in Proc. of the 12th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’07), 2007, pp. 249–258. [Online]. Available:
http://doi.acm.org/10.1145/1229428.1229479

[14] J. Zhai, W. Chen, and W. Zheng, “Phantom: predicting performance
of parallel applications on large-scale parallel machines using a single
node,” SIGPLAN Notices, vol. 45, no. 5, pp. 305–314, 2010. [Online].
Available: http://doi.acm.org/10.1145/1837853.1693493

[15] X. Wu and F. Mueller, “ScalaExtrap: trace-based communication
extrapolation for SPMD programs,” in Proc. of the 16th ACM
symposium on Principles and practice of parallel programming
(PPoPP ’11), 2011, pp. 113–122. [Online]. Available: http://doi.acm.
org/10.1145/1941553.1941569

[16] L. Carrington, M. Laurenzano, and A. Tiwari, “Characterizing
large-scale HPC applications through trace extrapolation,” Parallel
Processing Letters, vol. 23, no. 4, 2013. [Online]. Available:
http://dx.doi.org/10.1142/S0129626413400082


