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Abstract. Automatic generation of parallel unit tests is an efficient and
systematic way of identifying data races inside a program. In order to
be effective parallel unit tests have to be analysed by race detectors.
However, each race detector is suitable for different kinds of race condi-
tions. This leaves the question which race detectors to execute on which
unit tests. This paper presents an approach to generate classified par-
allel unit tests: A class indicates the suitability for race detectors con-
sidering low-level race conditions, high-level atomicity violations or race
conditions on correlated variables. We introduce a hybrid approach for
detecting endangered high-level atomic regions inside the program under
test. According to these findings the approach classifies generated unit
tests as low-level, atomic high-level or correlated high-level. Our evalu-
ation results confirmed the effectiveness of this approach. We were able
to correctly classify 83% of all generated unit tests.

1 Introduction

Today, unit testing is an essential part of software development. A software
artifact may consist of billions of lines of code. A full error analysis can be
very time consuming and is often unnecessary. Usually, only new and modified
code regions have to be tested. For this, developers create unit tests for the
considered software. By creating unit tests, small parts of the program can be
effectively tested without executing redundant code regions to find new bugs.
From unit testing, a new field of research and work has emerged: automatic unit
test creation [1]. One remarkable aspect of this work is the parallel unit test
generator which focuses on creating unit tests for concurrency bugs.

However, parallel unit tests have to be analysed by external concurrency bug
detectors. In general, each of these tools has varying suitability for different
classes of concurrency bugs. Today, parallel unit tests do not come with any
information on the potentially contained class of bug. Therefore, applying the
correct concurrency bug detector is left to the user and mostly results in trial-
and-error application.

In this work we present a parallel unit test generator which produces classified
unit tests for race detection. We generally distinguish tests by whether they
are suited for low-level or high-level race detectors. Additionally, we further
classify high-level unit tests according to their suitability for race detectors for
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correlated variables. In order to realise this, our work builds on the existing unit
test generator AutoRT [2] which analyses and creates parallel unit tests from
method pairs. In the scope of this paper we want to introduce an extension of
this work: AutoRT+. We enhance AutoRT by identifying and analysing possibly
violated high-level atomicity inside the method pairs.

For a total of 10 applications AutoRT+ automatically generated and classified
130 parallel unit tests for low-level and 106 parallel unit tests for high-level
race detectors. From these 106 high-level tests AutoRT+ classified 52 for race
detectors on correlated variables. We analysed the generated unit tests with four
different race detectors. During our evaluation we observed that 83% of all unit
tests were correctly classified.

2 Background

In this section we introduce terms which we use in the scope of this paper.

2.1 High-level Data Races

Thread Normalize
Acquire Lock

len =
√
x2 + y2;

x = 1
len ∗ x;

y = 1
len ∗ y;

end

end

Thread Double
Acquire Lock

x = 2 ∗ x;
end
Acquire Lock

y = 2 ∗ y;
end

end

Fig. 1. A high-level data race violating the seman-
tics of the vector (x, y)

In our work, we define a race
condition as an atomicity vio-
lation when accessing variable
values. We further divide race
conditions into high-level and
low-level race conditions, ac-
cording to the number of vari-
ables that are part of the data
race.

Low-level races violate the
atomicity of a single variable
access. A low-level data race
occurs when two concurrent
threads access a shared vari-
able without synchronization and when at least one of these accesses is a write.

High-level races violate the atomicity between several variable accesses. A
high-level race condition is generally harder to detect, since identifying high-
level atomicity requires an understanding of the program semantics. Figure 1
gives an example for such a high-level data race: All accesses have been secured
by locks. However, if we have the interleaving in which the vector is normalized
in between the doubling operation, the values of x and y are not correctly tuned
to each other any more. We recognize that the semantics of those variables has
been violated.

There are different approaches for identifying high-level atomic regions. In our
work, AutoRT+ relies on the following two approaches.
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Variable Correlations. Two variables are correlated iff their values are, or
are meant to be, in a semantic relationship during the entire program execution
[9]. Therefore, accesses to correlated variables form high-level atomic regions.
Violations of this atomicity lead to correlation violations: the semantic relation-
ship between the correlated variables becomes violated. We already introduced
an example of a variable correlation in figure 1, where the two variables x and y
constitute a vector. Here, the high-level atomicity inside Double is endangered.

Region Hypothesis. The region hypothesis [3] employs the concept of compu-
tational units in order to identify high-level atomic regions. Thereby, a compu-
tational unit is the longest sequence of instructions which satisfies the following
two conditions:

1. The instructions are data and control dependent on one another. Thus, there
exist no independent computations inside a single computational unit.

2. Inside a single computational unit a shared variable is not read after it has
been written to.

The concept assumes that a typical atomic operation on a shared data struc-
ture consists of three parts: reading, computing and storing. The high-level
atomic region to be protected inside a computational unit is called the shared
region. It starts with the first access to a shared variable and ends with the last.

2.2 Parallel Unit Tests

Function Parallel Unit Test()
// Initializing context

// Concurrent invocation

Thread1.Start(Method1);
Thread2.Start(Method2);

// Wait for methods to

finish

Thread1.Wait();
Thread2.Wait();

end

Fig. 2. General structure of a parallel unit
test

Unit testing has become a common
practice in the field of software engi-
neering. The idea of unit testing is to
concentrate debugging on small parts
at a time instead of the whole pro-
gram. This promises better precision
and shorter testing times since bug
detection can be focussed on the rel-
evant code without analysing or exe-
cuting the whole program. A unit test
verifies the correctness of the corre-
sponding part of the program informs
about and reports any anomalous be-
haviour. For this verification we have
to execute the unit test. During exe-
cution the program part to be tested
is invoked and the results of the invocation are compared to the expected results.

Parallel unit tests are a special subclass of unit tests which distinguish them-
selves in the following ways:

1. A parallel unit test contains the parallel invocation of two methods, a method
pair.
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2. It should not be executed directly but is intended to be analysed by tools
for concurrency bug detection.

3. The parallel unit test is independent with respect to execution. This means
it can be executed without any additional support. This is an important
feature for dynamic concurrency bug detection tools which need to execute
the code for analysis.

Figure 2 illustrates the generic structure of a parallel unit test, divided into
three parts: Initializing the necessary context, concurrently invoking the methods
and synchronizing with the main thread.

3 Related Work

We present some approaches for the automatic generation of parallel unit tests
and race detection approaches used in the scope of this paper. ConCrash [4]
uses a static race detection approach to identify methods for unit test genera-
tion. The actual generation process is done by employing a Capture-And-Replay
technique. ConCrash only considers methods in which race conditions have been
found. Katayama et al. [5] explain an approach for the automatic generation of
unit tests for parallel programs. The approach uses the Event InterAction Graph
(EIAG) and Interaction Sequence Test Criteria, ISTC. Musuvathi et al. [10] use
reachability graphs to generate unit tests for parallel programs. The approach
proved to be very effective on small programs. However, it is not scalable regard-
ing programs with a large amount of parallelism. A. Nistor et al. [7] generate
parallel unit tests for randomly selected public class methods. The approach
appends complex sequential code to the unit tests in order to increase the pre-
cision of concurrency bug detection. The approach only considers some parts of
the program for unit test generation and neglects multiple class interactions.

MUVI [8] is a hybrid race detector for correlated variables. The algorithm
employs a static correlation detection analysis based on data mining techniques.
Subsequently, MUVI executes a dynamic race detection on the program under
test. The correlation detection does not consider data dependencies between
correlated variables and the race detection cannot identify continuous locks for
high-level atomic regions. Helgrind+ for correlated variables (HCorr) [9] is a
dynamic race detection approach. Parallel to the race detection the approach dy-
namically detects correlated variables by identifying computational units. HCorr

considers variables correlated if they are accessed in the same computational
unit. CHESS [10], [11] dynamically searches a program for concurrency bugs
including races, deadlocks and data errors. Through user annotations CHESS is
also able to identify high-level races. However, for whole coverage the approach
needs to perform a dynamic analysis for each interesting thread scheduling. This
naturally leads to comparatively high analysis times for large programs. The
Intel Thread Checker is a commercial dynamic race detector for low-level race
conditions. It is part of the Intel Inspector [12], which is a known tool for de-
tecting conventional concurrency bugs as well as memory leaks. [13] presents a
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dynamic race detector (NDR) which is able to detect low-level and high-level
races by identifying non-deterministic reads. Thereby, a non-deterministic read
is a read access on a value which is written dependent on the scheduling of
threads. NDR also dynamically identifies correlated variables by detecting pat-
terns of data and control dependencies. Finally, NDR reports for each found race
condition the violated variable correlations.

4 Approach

This section presents AutoRT+, a parallel unit test generator which produces
classified unit tests. The approach extends the parallel unit test generator Au-
toRT [2] by classification analysis techniques. First, we shortly introduce the
original AutoRT approach. Thereafter, we present our new methods and de-
scribe the new features of AutoRT+.

4.1 AutoRT

Fig. 3. Overview of AutoRT

AutoRT is a proactive unit test generator for
parallel programs which uses both dynamic
and static approaches for program analysis.
For a given program the algorithm considers
all possible method pairs as candidates for
unit testing. In its generation steps AutoRT
filters this candidate set to the most signif-
icant method pairs and generates unit tests
based on them. Figure 3 gives an overview of
the approach.

The algorithm identifies significant method
pairs in two independent analyses:

1. A static analysis filters the candidate set
to parallel dependent method pairs, i.e.
method pairs containing accesses to the
same variables.

2. A dynamic analysis reduces the candidate
set to method pairs which truly run in par-
allel.

Having obtained a significant candidate set,
AutoRT employs a Capture-and-Replay tech-
nique: It dynamically records the object states which are necessary for invoking
each method pair in parallel, called the test context. After AutoRT has fil-
tered out equivalent contexts, the algorithm creates a parallel unit test for each
different context of a method pair. Since the Capture-and-Replay technique re-
constructs only contexts which actually existed during program execution, the
generated unit test cases do not depict situations which never happen during
runtime.
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4.2 Overview of AutoRT+

AutoRT+ introduces an approach for producing classified unit tests. It distin-
guishes between three classes of parallel unit tests: (a) low-level unit tests which
are suited for low-level race detectors, (b) high-level atomicity unit tests, which
should be analysed by high-level race detectors in general, and (c) high-level
correlation unit tests which are suitable for high-level race detectors considering
correlated variables.

Method Pairs 
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Analysis 

Parallel Dependency  
Analysis 

Object State  
Recording 

Unit Test  
Generation 

Parallel Unit Tests 

Test Contexts 
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Fig. 4. Overview of AutoRT+

Figure 4 gives an overview of the unit
test generator. Extensions are colored and
are detailed in the following:

1. We have extended the dynamic paral-
lelism analysis to protocol the encoun-
tered variable identities. This infor-
mation is used in the subsequent com-
putational unit and correlation detec-
tion to improve their precision.

2. The static parallel dependency anal-
ysis now also reports the variables
which cause the parallel dependency
of the method pair.

3. After the parallelism and parallel de-
pendency analysis, we identify all
possible computational units of each
method pair.

4. We perform a correlation detec-
tion analysis considering all identified
computational units in the program.

5. For each method pair we determine
endangered high-level atomic regions.
In order to do this, we consider the
identified computational units and the
detected correlated variables.

6. Finally, we classify the method pairs
according to whether they contain en-
dangered atomic regions and in what
way they are endangered.

Then, AutoRT+ employs the Capture-and-Replay technique for generating
the parallel unit tests. Finally, the class of the unit test is determined by the
class of the method pair it is based on.

4.3 Shared vs. Method Pair-Shared (MP-Shared)

A variable is shared iff multiple threads access the variable during program
execution. We further differentiate method pair shared (mp-shared) variables.
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A variable is mp-shared for a method pair iff each of the two methods in the pair
accesses the variable from a different thread. Obviously, an mp-shared variable
is also a shared variable but a shared variable is not necessarily mp-shared for
every method pair.

In the context of AutoRT+ we can identify mp-shared variables with the
help of the dynamic parallelism and static parallel dependency analysis. The
mp-shared variables of a parallel method pair are the members of the set of
variables on which the two methods are parallel dependent.

4.4 Identifying Computational Units

For a given method pair we perform a static approach to identify the compu-
tational units for each method. In order to do so, we need information about
the data and control dependencies between instructions and the shared vari-
ables. For this reason, we employ an analysis on the method to detect the
data and control dependencies between its contained instructions. Further on,
for the shared region we do not regard shared variables in general but only the
mp-shared variables of the method pair. We use the information gained by the
preceding parallelism and parallel dependency analysis in order to determine
the mp-shared variables.

Function SetSize(newSize)
SizeFt = newSize;
if SizeFt > 6 then

Big = true;
end
SizeCm = SizeFt ∗ 30, 48;
MethodCount + +;

end
CU1 = {newSize, SizeFt, SizeCm};
CU2 = {newSize, SizeFt, Big, SizeCm};
CU3 = {Count};

Fig. 5. All three possible computational
units for the method SetSize

By traversing the control flow
graph of the method on a specific path
we are now able to identify the com-
putational units a method consists of.
However, different paths may lead to
different computational units. In prin-
ciple, for all possible computational
units we would need to traverse all
possible paths. But a method includes
an infinite number of possible con-
trol flow paths for traversal when it
contains loops. Therefore we follow a
more relaxed branch coverage, mean-
ing that for every branch in the method there exists a path we traverse which
covers that branch. For each encountered instruction on a path we perform the
following operations:

– An instruction without a data or control dependency is initially assigned its
own computational unit.

– The same goes for an instruction which accesses a previously written mp-
shared variable.

– For other instructions, we merge the computational units of the instruc-
tions on which they are data and control dependent and assign the resulting
merged computational unit to the instruction.

Figure 5 shows an example for the computational units detection. The pre-
sented method contains two possible control flow paths. Our first path skips
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the control flow branch of the if-statement. As a result, we identify CU1 and
CU3. Since we demand a full branch coverage of the control flow, our second
path follows the control flow branch and identifies CU2 and CU3. Thus, we have
identified all three possible computational units of the method.

4.5 Identifying Correlated Variables

For identifying correlations between variables we perform an analysis on the
given computational units of the whole program. Our approach is based on the
concepts of HCorr [9] and MUVI [8]. According to HCorr, variables are correlated
if they are accessed within the same computational unit. This implies a strong
relationship between data/control dependencies and variable correlations. How-
ever, this criterion seems to be too weak for successfully detecting correlated
variables. Variables that may be initialized in the same computational unit but
bear no further connection during the rest of the program can hardly be called
correlated. We expect correlated variables to be in relation to each other during
most of the program’s execution. The approach MUVI uses is based upon this
assumption. Here it is assumed that variables which are accessed relatively often
near to each other are likely to be correlated. However, it does not additionally
regard data and control dependencies for its analysis.

We introduce a hybrid approach for identifying correlated variables which
combines the ideas of HCorr and MUVI. As a result, we consider variables whose
accesses appear relatively often in the same computational units to be correlated.
The more frequently variables are accessed in the same computational units,
the higher the probability that these variables are actually correlated. We call
this probability the correlation probability. In order to compute the correlation
probability for a variable pair, we sum up the total number of accesses to these
variables inside the program. Then, the correlation probability is the percentage
of accesses that appear inside a computational unit accessing both variables of
the pair.

We only identify correlations between shared variables. Trivially, a correlation
consisting only of local variables cannot be involved in an atomicity violation;
there is just one thread accessing the participating variables.

Figure 6 gives an example for the correlation detection approach, in which
we consider only two methods accessing shared variables. In this situation the
variables SizeF t and SizeCm are correlated. During the method Initialize the
data dependencies between Count and SizeF t is just arbitrary since they have
the same initial values. The computational unit obtained from SetSize gives a
better representation of the semantic relationships between the variables. When
we apply our correlation detection algorithm on the two methods, we identify
the correlated variables SizeF t and SizeCm with a correlation probability of
100%. The correlation probabilities involving the uncorrelated variable Count
are significantly lower.
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Function Initialize()
SizeFt = 0;
SizeCm = SizeFt;
Count = SizeFt;

end
Function SetSize(newSize)

SizeFt = newSize;
SizeCm = SizeFt ∗ 30, 48;
Count = Count + 1;

end

CU(Initialize) = {SizeFt, SizeCm,Count};
CU1(SetSize) = {SizeFt, SizeCm};
CU2(SetSize) = {Count};
#Accesses(SizeFt) = 5;
#Accesses(SizeCM) = 2;
#Accesses(Count) = 3;

CorrelationProb(SizeFt, SizeCm) = 7/7 = 1;
CorrelationProb(SizeFt, Count) = 4/8 = 0.5;
CorrelationProb(SizeCm,Count) = 2/5 = 0.4;

Fig. 6. Correlation probabilities for the variable pairs accessed in two methods

4.6 Endangered Atomicity

After we have identified computational units and correlated variables, we deter-
mine endangered high-level atomic regions. Therefore, we consider the synchro-
nisation instructions of the method pair. Any kind of synchronization instruction
inside the mp-shared region of a computational unit suggests a possible atom-
icity violation. For this reason, we regard the atomicity of that computational
unit as being endangered. We determine endangered correlated variables in a
similar manner. A synchronization instruction which separates two accesses to
correlated variables hints at a high-level atomicity violation.

If we do not detect any synchronization instructions, we can assume that
the accesses in consideration are either fully and continuously synchronized or
not synchronized at all. Of course, the latter case may lead to low-level race
conditions and, if applicable, a violation of a high-level atomic region. Despite
that, we do not consider this case an endangerment of high-level atomicity, since
totally unsynchronized accesses naturally come with low-level race conditions.
Therefore, the flaws can be found by low-level race detectors. Thus, a generated
unit test for such a method pair should be classified as low-level and analysed
by a low-level race detector. Figure 7 illustrates examples for high-level atomic
regions we consider endangered or safe.

temp = a;
a = temp + 1;

(a) Safe atomic re-
gion

temp = a;
Acquire Lock

a =
temp + 1;

end

(b) Endangered
atomic region

Acquire Lock
x = 2 ∗ x;
y = 2 ∗ y;

end

(c) Safe correlation
accesses

Acquire Lock
x = 2 ∗ x;

end
Acquire Lock

y = 2 ∗ y;
end

(d) Endangered cor-
relation accesses

Fig. 7. Examples of safe and endangered high-level atomic regions. Note: All variables
are shared and the variables x and y are correlated.
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4.7 Unit Test Classification

After we have determined the endangered high-level atomic regions we classify
the method pairs accordingly:

Low-Level: The method pair should not contain any high-level race conditions.
Therefore, it does not include computational units or correlated variables, which
are endangered.

Atomic High-Level: The method pair contains at least one endangered compu-
tational unit. However, there are no endangered accesses to correlated variables.

Correlated High-Level: The method pair contains at least one endangered vari-
able correlation.

In this kind of classification we willingly allow the possibility of low-level race
conditions to be present inside high-level method pairs. This is because high-
level race detectors are generally able to also identify low-level race conditions.
On the other hand, low-level race detectors are unable to identify high-level race
conditions. Therefore, we assign method pairs which may contain low-level and
high-level race conditions to a high-level class.

5 Implementation

We implemented AutoRT+ in C# which runs within the .NET runtime. For data
and control flow analysis as well as the code instrumentation we employed the
Common Compiler Infrastructure (CCI) framework. Therefore, the presented
analysis works on the Common Intermediate Language (CIL) which underlies
every .NET program.

The dynamic parallelism analysis protocols encountered field variable ac-
cesses. We identify each field variable by its unique field identifier (acquired
from the CCI framework) and the hash code of its parent object.

For our approach we need to identify data and control dependencies. CCI
already provides simple data and control flow analysis data structures. However,
control flow branch analysis, which is required for the control dependencies, is
not supported by the framework. Therefore, we identify the scope of control flow
branches via post dominator analysis and apply a simple and efficient algorithm,
which was presented in [14].

Detecting endangered atomic regions requires the identification of synchro-
nization instructions. In .NET, synchronization instructions are method calls
to the .NET core library which communicate with the operating system. We
are able to detect these method calls inside the CIL code of the program by
their distinctive namespace: System.Threading. All methods belonging to that
namespace manage synchronization operations between threads. Also, as our
analysis does not distinguish between the types of synchronization, it is there-
fore able to identify synchronization instructions in general.
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6 Evaluation

We use sample programs as well as real-world applications for our evaluation
purposes. Table 1 lists the programs and provides an overview of their most
important characteristics and evaluation results.

Table 1. Summary of the evaluation programs

Program LOC Meth. Thrds Par.
Meth.

Par.
Meth.
Pairs

Corr.
Vars

Unit
Tests

Gen.
Time
(ms)

Bank Acc. 25 4 2 4 4 0 2 1030
Queue 31 6 3 6 14 2 10 451
Dekker 15 3 3 3 5 2 3 238
Order Sys. 360 7 5 5 15 13 15 1820
Corr Sys. 480 18 5 10 27 18 14 1923

Petri Dish 1070 35 7 35 230 12 24 23050
Kee Pass 1240 58 16 58 478 18 18 49300
STP 1120 46 12 37 315 25 53 29400
.Net Zip 14k 2366 19 63 1343 35 87 93900
Cosmos 78k 12k 19 269 5660 35 87 224600

We used the pro-
gramsBank Account,
BoundedQueue and
Dekker from CHESS,
which provides small
programs containing
high-level data races.
We chose an order-
system from MSDN
Code Gallery [15].
We implemented an
alternative version
containing various
correlated variables.
Furthermore, we eval-
uated the following open source programs:

– PetriDish [16], a simulation of three categories of organisms, all growing,
mating, and eating each other.

– KeePass [17], a password manager.

– SmartThreadPool (STP) [18], a thread pool library.

– DotNetZip [19], a toolkit for manipulating zip files.

– Cosmos [20], an operating system toolkit.

6.1 Correlation Detection Efficiency

We compare the efficiency of different thresholds for the correlation probability
in order to obtain the most suitable threshold. For this reason, we consider the
number of variables falsely identified as being correlated, the false positives, and
the number of missed correlated variables, the false negatives. In our evaluation
we tested thresholds for 50% to 100% correlation probability.

In our 10 evaluation programs we detected 134 correlations in total. The
efficiency of our correlation detection analysis depends highly on the chosen
threshold for the correlation probability. Generally, we expected and observed
that a low threshold leads to many false positives and fewer false negatives. A
high threshold, on the other hand, prevents false positives but also drastically
increases the number of false negatives.

Figure 8a shows the overall distribution of false positives and false negatives
and relation to the correlation probability threshold. The break-even point be-
tween false positives and false negatives are approximately 80%. At this point,
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Fig. 8. Efficiency of the correlation detection

we observed 18% false positives and false negatives. However, we rate false neg-
atives more critically than false positives. As a result, we regard a threshold of
70% to be ideal according to our observations. At this threshold the percentage
of false negatives is less than 5%. But as a major drawback we have to deal with
an average of 35% false positives.

Figure 8b shows the distribution of false positives and false negatives in regard
to the single evaluation programs with a 70% correlation probability threshold. In
the smaller test programs we observe far fewer false negatives and false positives,
each less than 5%. Some programs do not contain many correlations and due to
the small program size the contained correlations are rather obvious. The open
source programs prove to be more representative: Only with KeePass was there
a relatively low amount of false positives at 22%. The other programs are close
to the average of 35%. Considering false negatives, only DotNetZip stands out,
having 12% false negatives.

6.2 Classification Precision

We identify falsely classified unit tests based on the contained atomic regions
and the detected race conditions inside tests.

1. Low-level unit tests should not contain endangered high-level atomic regions
or high-level race conditions.

2. High-level unit tests in general should not only contain low-level race condi-
tions. Either they contain no race conditions or an arbitrary amount of race
conditions from which at least one is a high-level race condition.

3. High-level atomic unit tests should not contain endangered variable correla-
tions or race conditions on correlated variables.

4. High-level correlation unit tests should either contain no race conditions or
an arbitrary amount of race conditions from which one is at least a race
condition on correlated variables.
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We consider unit tests which differ from the specification above as falsely
classified. In order to identify race conditions we analysed the generated unit tests
with four different race detectors: CHESS, ITC, HCorr and NDR (see section 3).

CHESS and ITC are unable to detect high-level race conditions and were used
to determine strictly low-level race conditions. HCorr and NDR on the other hand
are both able to detect high-level atomic and correlation race conditions.

AutoRT+ generated 236 parallel unit tests in total. Our approach was able
to categorize these tests as shown in figure 9a. According to the observed distri-
bution, the majority, roughly 55% of all unit tests, were categorized as low-level.
Furthermore, our approach classified 25% of all generated unit tests as high-level
atomic and 25% as high-level correlated.
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Fig. 9. Distribution of generated parallel unit tests

Figure 9b shows the distribution of unit tests with regard to the evaluation
programs. Again, we can observe a significant difference from the average dis-
tribution in the smaller test programs. The test program ’order system’ was
designed not to contain any high-level race conditions which naturally resulted
in generating exclusively low-level unit tests. On the other hand, ’corr system’
mainly consists of accesses to correlated variables. A higher amount of high-level
unit tests was therefore expected. The unit tests for the open source programs
follow the average distribution.
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Fig. 10. Results of the race detectors applied to the classified unit tests
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Figure 10 shows the findings of the race detectors which we applied on the
classified unit tests. In the low-level tests we observed about 18% high-level
findings. Furthermore, of the reported findings of the high-level atomicity test,
29% were low-level and 7% were correlated high-level findings. Finally, the high-
level correlation tests included 28% low-level and 29% uncorrelated high-level
findings.

The validity of the classification between low-level and high-level unit tests is
illustrated by figure 11a. We observed that 11 of the unit tests (8%) which were
classified as low-level are actually high-level unit tests. In these cases, the region
hypothesis has failed to identify correct high-level atomic regions resulting in
computational units that are too small. In this way, our approach was unable to
identify the related atomic regions as endangered. Finally, 5 of the unit tests (3%)
classified as high-level are actually low-level unit tests. In this case the employed
region hypothesis lead to the estimation of atomic regions (computational units)
that were too large.
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Fig. 11. Precision of the categorization approach

The distinction between regular high-level unit tests and unit tests containing
endangered correlations turned out to be far more imprecise, as figure 11b illus-
trates. 5 unit tests (9%) contained undetected endangered variable correlations.
A major influencing factor is the false negatives of the correlation detection. Ad-
ditionally, we have a high amount of unit tests falsely categorised as unit tests
for correlated variables. In total, 18 unit tests (35%) were falsely categorized this
way. Here, the high amount of false positives in the correlation detection heavily
influences the outcome.

6.3 Performance

Figure 12 shows the time our analysis takes for classifying and ultimately gener-
ating the unit test in relation to the execution time. Since our approach analyses
method pairs, the time of classification is heavily dependent on the number of
parallel method pairs inside the program. The time for unit test generation is a
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sum of different partial times including the static parallel dependency analysis,
the correlation analysis, the dynamic parallelism analysis and the capture-and-
replay technique. Our experience is that the most critical performance impact
lies in the dynamic analysis. Multiple executions of the same program code and
expensive object recording cause a major slow down. The ratio between the over-
all unit test generation time and the execution time of the program varies wildly
by a factor between 16 and 266. Large programs with many objects and many
parallel methods like Cosmos cause a high state recording time. The static corre-
lation analysis only takes a small part of the overall generation time. Therefore,
the categorization time only takes a small part of the total unit test generation
time. In average about 5% of the total time goes into our additional analysis. In
the smaller test programs we can even report a rate under 1%.
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Fig. 12. Comparison between the unit test generation times of AutoRT+ and the
execution times of the evaluation programs

7 Conclusion

In this paper we introduced an approach which enhances automatic parallel unit
test generation and execution with a totally new dimension: classified unit tests.
Our analysis is able to distinguish between unit tests that should be analysed
by low-level race detectors, detectors for correlated variables or high-level race
detectors in general. This supports testing of parallel software by reducing the
number of unnecessary unit tests or unsuitable employed race detectors. Overall
for ten different applications, we were able to classify 83% of the generated unit
tests correctly.

In the future, we want to introduce new classes to AutoRT+. Generally, dif-
ferent race detectors vary in their effectiveness to detect specific kinds of concur-
rency bugs. Even detectors for correlated variables vary in precision depending
on the structure of the code. Therefore, as a next step we want to provide addi-
tional classification analysis and clustering metrics which state how method pairs
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are suited for specific race detectors. Furthermore, we can extend our heuristics
to other concurrency bugs like deadlocks and order violations.

Another direction for our future work would be to pass the results of our corre-
lation detection to the race detectors executing the generated parallel unit tests.
This would be especially useful for detectors which normally rely on the user anno-
tation for correlation specifications e.g. CHESS [10] or [21]. However, race detec-
tors with automatic correlation detection may profit from a reduced performance
overhead and increased precision by our preceding correlation analysis.
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