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Abstract—With the introduction of multicore systems and
parallel programs concurrency bugs have become more common.
A notorious class of these bugs are data races that violate
correlations between variables. This happens, for example, when
the programmer does not update correlated variables atomically,
which is needed to maintain their semantic relationship. The
detection of such races is challenging because correlations among
variables usually escape traditional race detectors which are
oblivious of semantic relationships. In this paper, we present an
effective method for dynamically identifying correlated variables
together with a race detector based on the notion of non-
deterministic reads that identifies malicious data races on cor-
related variables. In eight programs and 190 micro benchmarks,
we found more than 100 races that were overlooked by other
race detectors. Furthermore, we identified about 300 variable
correlations which were violated by these races.

I. INTRODUCTION

A notorious class of concurrency bugs in parallel programs
are race conditions. A race condition on a variable may
cause the variable to acquire an unexpected value, which
may lead to anomalous program behavior. Such variables may
even correlate with each other, which means their values
are mutually dependent on each other. Concurrency bugs in
general are hard to reproduce and to identify manually [1]. As a
result, automatic race detection has been an important research
field for several years. However, the impact of correlated
variables has only recently been of interest [2], [3], [4]. Con-
ventional race detectors often fail to identify race conditions
involving correlations between two or more variables. Taking
into account correlations between variables was shown to
enhance the precision at which races are detected. So far,
the successful detection of races on correlated variables was
thought to require the prior identification of correlations among
variables [2], [3], [4]. For this purpose, current approaches
either request information on correlations among variables
directly from the user or apply correlation detection algorithms
to the code.

In this paper, we introduce a novel approach to the de-
tection of races: It uses a race detection criterion that does
not depend on any prior knowledge of correlations, but is still
able to identify correlations while detect race conditions. In
this way, we can detect races on correlated variables, whose
correlations escape conventional methods. As we still identify
correlations between variables in the analysed program we can
additionally report potential correlations that a race condition

violates. As a result the user can categorize observed race con-
ditions and better foresee their impact on the program. During
the evaluation of our approach we found more than 100 races
among eight different programs and 190 micro benchmarks
which have not been found by other race detectors. At the
same time we were able to identify about 300 correlations
that were violated by these races.

In Section II, we introduce the basic terms of race con-
ditions and variable correlations. Further on, Section III dis-
cusses related work, detailing previous approaches to race
detection on correlated variables. Section IV describes the
core of our approach. Here, we present the race detection
criterion, the method of finding variable correlations, and the
overall race detection algorithm. Section V briefly explains
how we implemented the approach presented in Section IV. In
Section VI, we present experimental results of our approach,
which we compare to three other race detectors. Finally,
Section VII summarizes the paper and gives an outlook on
future work.

II. BASICS

In this section we introduce terms that we use throughout
the paper. We also present some basic techniques we apply
and explain how we define correlations between variables.

Race Conditions: Parallel computation may lead to con-
currency bugs, which include race conditions, atomicity vio-
lations, order violations and deadlocks [5]. In the context of
this paper, we restrict ourselves to race conditions. The exact
definition of a race condition varies wildly [6]. Generally, a
race condition is an anomalous behaviour due to unexpected
critical dependence on the relative timing of events.

In this work, we focus on race conditions involving vari-
ables and threads. By race condition we mean an anomalous
behaviour due to a variable’s value unexpectedly depending on
the scheduling of threads. Despite the restriction on variables
and threads our definition is also valid for most other work
covering this topic. This is because race conditions are usually
considered for variables and threads only. In Section III, we
mention some of these works.

Variable Correlations: We consider the code example in
Figure 1. Thread A converts a currency value represented in
Euro to its representation in Yen. Obviously, the value of the
Yen variable depends on the value of the Euro value. Since



Thread A
Euro = 300;
Print(Euro);
Yen = Euro ∗ 107;
Print(Yen);

end

Thread B
Euro = 500;
Print(Euro);
Yen = Euro ∗ 107;
Print(Yen);

end

Fig. 1. A race condition on Euro violating the correlation between Euro
and Y en.

we calculate the Yen value from the Euro value, Euro and
Yen are correlated. Variables correlate iff there exists a data,
control or logical dependency between their values. Logical
dependencies are particularly hard to identify in code: How
should an analysis determine that a name and a number form an
address and the respective variables are therefore correlated?
For example, in Figure 2 we can see a data dependency
between Street and PrivateStreet. Also, the figure contains
a control dependency between isPrivate and the variables
Street as well as StreetNo. From the labeling of the variables
Street and StreetNo we can infer a logical dependency
between them. But without any data or control dependency
involved, it is a very difficult task for an algorithm to decide
whether two variables are logically correlated. Hence, we
believe that the identification of correlations is at least as
complex as the race detection process itself. However, there are
race detectors which have to identify correlations first before
they are able to detect races. Therefore, they may tend to be
more unreliable than a race detector which is able to report all
races independently of recognized correlations.

if isPrivate == true then
Street = PrivateStreet;
StreetNo = 59;

end

Fig. 2. Example of data, control and
logical dependencies.

A race condition
may violate correlations
between variables and,
therefore, cause (more)
anomalous behavior
inside the program.
Therefore, the interaction
of correlated variables
and race conditions may
negatively influence program behavior. In fact, more than
30% of all race conditions involve correlated variables [5].
Figure 1 illustrates an example of such a violation. Two
threads each convert a value in the currency of Euro to
the currency of Yen. We can see that, for this, the value
of the Euro variable is converted and stored to Y en. The
two concurrent write accesses on Euro may influence the
data dependency between Euro and Y en in both threads. In
thread A, we expect Y en to contain the converted amount of
300 Euro. But depending on the scheduling of threads it may
also acquire the converted amount of 500 Euro. The result
does not meet the expectations. Therefore, we have a race
condition which violates the correlation between Euro and
Y en. The reasoning for thread B is analogous. To resolve the
race condition, contiguous lock sections (i.e., critical sections)
containing all statements involved in the update are necessary
(see Figure 3).

III. RELATED WORK

Race detection is a broad field of work. There are many
works which cover the detection of conventional race condi-

Thread A
Acquire Lock

Euro = 300;
Print(Euro);
Yen = Euro ∗ 107;
Print(Yen);

end
end

Thread B
Acquire Lock

Euro = 500;
Print(Euro);
Yen = Euro ∗ 107;
Print(Yen);

end
end

Fig. 3. Resolving the race condition in Figure 1 by using lock operations.

tions such as [7] or works considering atomicity violations [8],
[9]. However, in the scope of this paper we want to focus on
race detectors considering correlations between variables.

CHESS [10], [11] dynamically searches a program for
parallelization bugs including races, deadlocks and data errors.
Through user annotations CHESS is also able to identify race
conditions violating correlations between variables. However,
to achieve full coverage the approach needs to perform a
dynamic analysis for each thread schedule of interest. This
naturally leads to comparatively high analysis times. [12] and
[3] introduce a dynamic race detector for correlated vari-
ables. The race detector identifies variable correlations through
user annotations in the source code. The algorithm checks
concurrent accesses to correlated variables for serializability.
In this way, unserializable access patterns are identified as
race conditions. However, the occurrence of harmful access
patterns is highly schedule dependent. MUVI [4] is an hy-
brid race detector for correlated variables. The algorithm
recognizes correlations among variables by applying a static
analysis which uses data mining techniques. A subsequent
dynamic analysis checks for race conditions by identifying
concurrent and unsynchronized accesses to correlated vari-
ables. Helgrind+ for correlated variables [2] (HCorr) is a
purely dynamic race detection approach. It is based on the
dynamic race detector Helgrind+ [13] for single variables
which runs on the virtual execution environment Valgrind
[14]. The approach uses dynamic analysis to identify vari-
able correlations using data and control dependencies. At the
same time, the algorithm dynamically checks for concurrent
and unsynchronized accesses to already recognized correlated
variables. Common to all approaches above is that they all need
information on correlated variables either via user annotations
or via correlation-detection heuristics.

IV. APPROACH

We introduce a dynamic analysis method capable of de-
tecting both correlations and race conditions at the same time,
but independently from each other. This is in contrast to
previous works in which the results of the race detection were
dependent on the identification of correlations. Nevertheless,
for a given race condition reported by our detector, we are able
to state which correlations are affected and provide valuable
information to the end user.

A. Race Detection

We identify race conditions regardless of whether the in-
volved variables are correlated or not. Therefore, we first define
the criteria on how we can recognize a race condition, which
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1 Conclusion

Thread A
Acquire Lock

Euro = 300 ∗ 0.75;
end
Acquire Lock

Print(Euro);
end

end

Thread B
Acquire Lock

Euro = 500 ∗ 0.75;
end
Acquire Lock

Print(Euro);
end

end

Thread A
Acquire Lock

Euro = 300 ∗ 0.75;

Print(Euro);

end

end

Thread B
Acquire Lock

Euro = 500 ∗ 0.75;

Print(Euro);

end

end
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Fig. 4. Sample where each read access on Euro has two write dependencies.

we introduce as non-deterministic reads. Identifying these
criteria, in turn, requires information about the synchronization
between instructions executed in parallel. For this reason we
define synchronization states. Subsequently, to improve perfor-
mance via search space reduction, we introduce the concept of
epochs that group variable information into epoch variables.
The race detector is oblivious of correlations. Correlation
detection is performed independently of race detection. As
soon as a race is reported, correlation information is attached
to the race description.

Non-deterministic Reads: A read access on a variable can
obtain its value from one or more possible write accesses on
that variable. We refer to these write accesses as the write
dependencies of that read access. Only the thread scheduling
decides which of the possible write accesses creates the read
value during execution.

In Figure 4 you can see an example of a read access having
two write dependencies. All instructions are locked. However,
the read access for the print can either acquire the written value
from the assignment in thread A or B. This entirely depends
on the thread scheduling. Hence, we regard both write accesses
as write dependencies of the read.

From write dependencies we can infer non-deterministic
reads. A non-deterministic read is a read access that either

1) has multiple write dependencies and/or
2) has at least one write dependency executed in parallel.

We use non-deterministic reads as a detection criterion for
race conditions.

A non-deterministic read indicates a variable’s value de-
pendence on thread scheduling. Additionally, since the value
is read it influences the program behavior. This comes close
to our definition of a race condition criterion. However,
our criterion includes false positives. This means, not every
non-deterministic read is actually a race condition. A non-
deterministic read inside a program can also be intentional
or harmless. Figure 5 shows an example of an intentional or
harmless non-deterministic read. During the incrementation,
i has a parallel write dependency inside the other thread.
However, what matters in this case is the final result which
will always be i+ 2.

Even though our criterion returns false positives, we con-
sider it as complete: We can identify all sources where poten-
tially harmful non-determinism results from thread scheduling.
The reasoning behind this statement is follows: Obviously,
if every read access inside a program is deterministic we
can exclude a race condition by definition. There is either
no variable value which is dependent on the scheduling of

Thread A
Acquire Lock

i ++;
end

end

Thread B
Acquire Lock

i ++;
end

end

Fig. 5. An example of intentional and harmless non-deterministic reads.

threads or it does not influence program behavior since it is
not read. Conversely, a program containing a race condition
must have at least one write access which causes a variable’s
value dependency on the thread scheduling. Since the race
must influence program behavior, the value created by that
write access must be read. Hence, the read access may acquire
the variable’s value depending on the thread scheduling. That
means, the read access must be a non-deterministic read.

For identifying non-deterministic reads we have to identify
the write dependencies of a read access. We do this by
introducing happens-before relations and locks. Let r be a read
access and w be a write access on variable v, then w is a write
dependency of r iff all of the following criteria are met:

1) Relevance: r does not happen before w.
2) Directness: There exists no write dependency d of r

for which it holds that w happens before d.
3) Freedom: There exist no lock l and no write access

w′ on v for which it holds that l continuously secures
w′ as well as r and l secures w.

Figure 6 illustrates some scenarios for the criteria defined
above. The criterion relevance ensures that the program does
not always execute a potential write dependency after the
read access. If it did, the write obviously could never have
any effect on the read access. The left code snippet shows
a write access on x which is executed after the read access
and is therefore no write dependency. Directness means that
we always regard the latest potential write dependency that
is executed before the read access or in parallel to it. So, we
exclude write accesses, which are always executed before other
writes. In the middle code snippet the first write access on x is
overwritten by the subsequent write access. Therefore, only the
second write access is a write dependency of the read access.
Finally, in criterion freedom we also consider locks. When a
read access is contiguously locked with a write dependency,
then no other write access, secured by the same lock, can be a
write dependency of the read access. As an example of this, see
the right code snippet: All other write accesses on x secured
by Lock are either executed before (making them indirect) or
after (making them irrelevant) the depicted critical section.

Relevance:
Print(x);
x = 4;

end

Directness:
x = 2;
x = 5;
Print(x);

end

Freedom:
Acquire Lock

x = 5;
Print(x);

end
end

Fig. 6. Scenarios for the write dependency criteria.

Synchronization States: In order to obtain happens-before
relations and locks we introduce synchronization states. At any



moment during execution, a thread has specific synchroniza-
tion properties with regard to other threads. Henceforth, we
can say a thread is always in a certain state of synchronization.
Such a state expresses the happens before and locking relations
between instructions executed by this thread and instructions
from other threads. A synchronization state consists of:

• A vector clock [15] for determining happens-before
relations

• A lock vector indicating which locks the thread cur-
rently holds and how often the thread has acquired
each lock so far

We use the number of acquisitions for each lock to deter-
mine whether the thread has released the lock in between. In
this way we can recognize continuous locks between accesses.

Epochs: We have seen, that whether a write access is a
dependency of a read access is dependent on its own and the
read access’s state of synchronization. Accesses sharing the
same synchronization state can therefore be treated equally.
Consider Figure 7 for example. Here, both read accesses on
x in thread A share the same state of synchronization. It
is sufficient to determine the parallel write dependency of
only one read access. The other read must have the same
dependency since its synchronization state is not different.
This means, for determining write dependencies we can form
equivalence classes of read and write accesses according to
their synchronization state. This reduces our state space for
performing our race detection analysis.

Thread A
Print(x);
Print(x);

end

Thread B
x = 5;

end

Fig. 7. Thread A contains two read accesses with the same synchronization
state. Both have the write access in thread B as a parallel write dependency.

We partition the thread execution into epochs. An epoch
is a sequence of instructions that all have the same synchro-
nization state, i.e., the thread does not execute any synchro-
nization instructions within an epoch. Furthermore, we want
to consider only maximum epochs, i.e., epochs which consist
of the longest possible sequence. In each epoch we store the
information of which variables the thread has accessed and
how (read, written or both) it accessed them. We will call
this information epoch variables. Like between access we can
recognize happens-before relations and locks. Therefore, we
infer write dependencies between epoch variables with the
same three established criteria for variable accesses: relevance,
directness and freedom.

B. Correlations

Correlations imply expectations the user or the program has
regarding the variables. If there is a correlation between two
variables we expect that the values of these variables are in
some way related to each other. We already mentioned that
we regard this relation as either a data, control or logical
dependency. One possible effect of a race condition is that it
may violate such a relation and therefore also the correspond-
ing correlation. In this section we present an approach that

determines which correlations are violated if a read access is
non-deterministic. For this, the process of inferring relations
between variables (and therefore correlations) is inspired by
the method of HCorr.

During dynamic execution HCorr tries to identify relations
between variables by considering data and control dependen-
cies. Assignments and control dependencies establish relations
between the participating variables. During an assignment the
read variables, the related variables of the read variables, and
the written variable become all related to each other. Likewise,
a variable which is control dependent on another variable
becomes related to that variable and all its relations. At the
same time HCorr considers, for the purpose of race detection,
these related variables to form a computational unit. These
computational units are accesses which form a critical region
regarding a specific computation. When HCorr detects the end
of a computational unit the approach clears the relationship of
all involved variables and begins anew.

We try to find relationships and therefore correlations
between variables in a similar way. However, our approach
is enhanced in three ways:

1) Since we are not dependent on computational units
for race detection, we do not consider them for
clearing relationships between variables. Instead we
tie the lifetime of a relationship to the lifetime of
the responsible data and control dependency. As a
result, we do not miss relationships between variables
in future computations. The code example in Figure
8 illustrates this difference. After the execution of
the code HCorr would establish a new computational
unit between the participating variables and forget
about their relationships. Our approach still keeps this
important information for later use.

2) We keep track of the directions of the dependencies.
HCorr can tell that the variables are related but
not how they are related. We use this additional
information to categorize the recognized correlations.
This directly benefits the information content for the
end user.

3) We do not only consider data dependencies estab-
lished through assignments but also through hierar-
chical (parent-child) relationships. That is a type of
relationship HCorr misses entirely.

Dependencies
Euro = 300;
Yen = Euro ∗ 107;
Dollar = Yen/97;
Print(Dollar);

end

Fig. 8. Code example where Euro,
Y en and Dollar become data depen-
dent on each other.

With our extensions
we can formulate four
different patterns, which
cover all possible re-
lationships derived from
data and control depen-
dencies (see Figure 9).

Vertical correlations:
We consider two vari-
ables which are data de-
pendent on each other.
This means there exists a
correlation between these variables. We call this correlation a
vertical correlation. It ends as soon as the data dependency
between its variables ends. This means, as soon as any of those
two variables is rewritten.
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Control correlations: Also, a control dependency infers a
correlation between the corresponding variables. Therefore,
two control dependent variables are in a control correlation.
As the vertical correlation this correlation ends when the
corresponding control dependency ends. In this case, the
dependency ends if either of both variables is written outside
of the corresponding control branch.

Parental correlations: In the context of classes and their
field variables (OOP) we recognize data dependencies. Natu-
rally, a variable is data dependent on the class (or object for
non-static variables) it belongs to. If a program writes two
variables sharing the same parent subsequently, without any
write access in between, we can expect variables belonging to
the same class to have something in common, like forming
the address of a person. Therefore, we consider them to be
parentally correlated. However, not all field variables are really
correlated, as for example a person’s hair color and size. We
consider the chances of a real correlation higher if the two
variables are written subsequently, as they tend to belong to
the same computation. This correlation ends as soon as any
two of its variables are written again.

Horizontal correlations infer implicit data dependencies
from multiple variable assignments. If at any time, two vari-
ables are dependent on a common third variable with no
redefinition of any of these variables in between, we consider
these two variables horizontally correlated. This is due to the
fact that the two variable’s values are in a special relationship
which is independent of the variable they depend on directly.
The two variables retain this special relationship even if they
are no longer data dependent on that variable, as their values
did not change. Like the parental correlation, this correlation
ends as soon as any two of its variables are written again.

We store in each read epoch variable the current cor-
relations it participates in. The idea is to report the stored
correlations of read epoch variable as being violated, as soon
as we detect that the corresponding read access of the epoch
variable is non-deterministic.

C. The Algorithm

Now, we will detail the race detection algorithm which is
illustrated in Figure 10. In the first step, the algorithm collects
correlation and access information. During dynamic execution
we gather the epoch variables for each thread separately. At
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New write dependency relations
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Fig. 10. Illustration of the race detection algorithm.

the same time, we independently detect variable correlations
according to the criteria specified in Section IV-B. When a
thread reads a variable we associate all current correlations to
its corresponding epoch variable.

When a thread executes a synchronization instruction or
terminates, its current epoch ends. Then, we execute the
second step of the algorithm: At the end of an epoch we
try to identify new write dependencies between the epoch
variables. For each epoch variable that has been read, we
determine its write dependencies from epoch variables of the
currently and previously finished epochs. Analogously, for
each epoch variable that has been written, we determine the
epoch variables for which it is a write dependency. We infer
write dependencies as usual by evaluating the three criteria
relevance, directness and freedom. If, during that process,
any epoch variable obtains more than one write dependency
or one write dependency which is executed in parallel, we
report a race condition for all read accesses associated with
the respective epoch variable. Furthermore, we also report
all associated correlations of that epoch variable, which we
consider violated by that race condition.

If the thread under analysis has not yet terminated, we start
a new epoch and continue with step one.

Example: Figure 11 shows an example of our algorithm.
In this case the epochs we consider correspond to the lock
blocks inside the threads. Hence, the execution of thread A
contains two epochs while thread B only contains one epoch.
In the first epoch of thread A, we gather the access information
on the epoch variables for Euro and Y en. We store that the
epoch variable for Euro is both read and written. For Y en
we only identify a write epoch variable. Furthermore, due to
the data dependency of the second assignment, we detect a
vertical correlation between Euro and Y en. As soon as the
epoch finishes, we begin searching write dependencies for the
epoch variable Euro. We recognize that it is its own write



dependency since it was written first and then read. Trivially,
it therefore meets all write dependency criteria: The epoch
variable does not happen before itself (relevance), there is
no write epoch variable in between (directness) and there
is no other write dependency with which it is continuously
locked(freedom). The epoch variable for Y en, on the other
hand, does not have any write dependency after the first epoch
has finished.

We proceed with the only epoch of thread B. At the end
of the epoch we have gathered the epoch variable for Euro
with written as its access information. We test whether this
epoch variable is a write dependency of thread A’s read epoch
variable for Euro: The write epoch is relevant since it is
executed in parallel. Also, it is direct since it does not happen
before any other write epoch. However, it is not free because
the read epoch variable is contiguously locked with itself and
the write epoch is secured by the same lock. Therefore, the
write epoch variable of thread B is not a write dependency of
the epoch variable of the first epoch in thread A.

Finally, thread A executes its second epoch. We identify
two read epoch variables for Euro and Y en. When the epoch
ends, we, furthermore, determine write dependencies. Trivially,
concerning Y en, the write epoch variable of the first epoch
in thread A is a write dependency to the current read epoch
variable. Analogously we infer the same for the variable Euro.
But additionally, we identify the write epoch variable from
thread B as a second write dependency: It is parallel, direct
and free. Therefore, we detect a non-deterministic read. It
has two write dependencies, one of which is a parallel write
dependency. As a result we report a race on the corresponding
read access. Further on, since the correlation between Euro
and Y en is still alive, we report that this correlation has been
violated by the detected race.

Thread A
Acquire Lock

Euro = 5;
Yen = Euro ∗ 107;

end
Acquire Lock

Print(Euro);
Print(Yen);

end
end

Thread B
Acquire Lock

Euro = 2;
end

end

Fig. 11. Example of a non-deterministic read on Euro violating the vertical
correlation to Y en.

V. IMPLEMENTATION

We implemented the race detector using the Microsoft
.NET Framework. For data and control flow analysis as well
as the code instrumentation for the dynamic race detection
we employed the Common Compiler Infrastructure (CCI)
framework. Therefore the presented algorithms work on the
Common Intermediate Language (CIL) which underlies every
.NET program. Synchronization instructions are method calls
to the .NET core library which communicate with the operating
system. We are able to detect these method calls inside the
CIL code of the program and add our instrumented functions
to replace them. Naturally, our implementation has to know

all respective synchronization methods of the core library. Our
implementation supports four method calls which realize lock-
ing/unlocking and signal/wait operations. Having these, the
race detector currently covers the fundamental synchronization
operations.

Furthermore, we need to identify control flow branches in
order to recognize control correlations. We identify the scope
of control flow branches via post dominator analysis and apply
a simple and efficient algorithm, which was presented in [16].

For memory and state space reduction our implementation
limits the number of epoch variables which we store for race
detection. We consider only the n-newest epoch variables per
variable and per thread. Where n is a user user specified
number.

VI. EVALUATION

In this section we introduce our test environment, including
our evaluation metrics. Subsequently, we present our evalua-
tion results.

A. Test Environment

For our evaluation, we created 190 different micro-
benchmarks. In each micro-benchmark we execute two meth-
ods in parallel which both access one or more shared variables.
In addition to the micro-benchmarks, we use real-world appli-
cations for our evaluation purposes. MSDN Code Gallery [17]
contains applications which demonstrate the functionality of
parallel programming in .NET. For the evaluation we chose
an order-system simulation: A master thread manages many
worker threads executed concurrently. We altered the synchro-
nization operations and introduced different race condition sce-
narios in five different versions of the application. Additionally,
we evaluated the open source programs PetriDish [18], the
program library of KeyPass [19] and SmartThreadPool (STP)
[20]. Their parameters are listed in Table I.

Program # Methods # Instr. # Synchs # Vars # Threads
Synch 60 1445 24 18 5
Unsynch 60 1430 16 18 5
Locked 58 1473 60 18 5
Gaps 58 1473 20 18 5
Corr 78 2012 40 29 5
PetriDish 133 4661 43 268 7
KeePassLib 1324 54176 27 5162 4
STP 590 9591 207 277 4

TABLE I. PROGRAMS USED FOR THE EVALUATION.
SYNCHRONIZATIONS INCLUDE STARTING AND JOINING OF THREADS.

We compare the results from our race detector to the
results of Intel Thread Checker (ITC), Microsoft Research
CHESS and HCorr. The Intel Thread Checker is part of the
Intel Inspector [21], which is a known tool for detecting
conventional concurrency bugs as well as memory leaks. We
chose ITC for the evaluation since it is commercial and widely
used in the development of real-world applications. CHESS on
the other hand is a very precise research-oriented race detector.
Furthermore, for the purpose of this evaluation, we have re-
implemented the race detector HCorr in the .NET framework.
HCorr bears much resemblance to our approach in matters
of correlation detection. Additionally, HCorr is specialized on



Category Expected Races Our tool HCorr CHESS ITC
R & R No Race 0 0 0 0 0
R & W Race 5 5 5 5 5
Locked Race 5 5 3 0 0
False lock Race 10 10 10 10 7
Timed No Race 0 0 0 0 0
W & W Race 5 5 2 5 5
Locked Race 5 5 2 0 0
False lock Race 10 10 4 10 8
Timed No Race 0 0 0 0 0
Unread No Race 0 0 2 5 5
I & I Race 5 5 4 4 4
Locked No Race 0 5 1 0 0
False lock Race 10 10 9 9 7
Timed No Race 0 0 0 0 0
I & R Race 5 5 5 4 3
Partial lock Race 22 19 16 0 0
Gaps Race 22 18 15 0 0
I & W Race 5 5 5 3 4
Partial lock Race 22 20 20 0 0
Gaps Race 22 21 20 0 0
Total (FN | FP) 153 10 | 5 24 | 7 103 | 5 110 | 5

TABLE II. RACE DETECTION RESULTS ON MICRO BENCHMARKS. R:
READ, W: WRITE, I: INCREMENT

finding races between correlated variables. The source code
for other tools which consider variable correlations was not
available to us.

B. Race Detection

We present the results of our race detector according
to missed race conditions and false races summarized as
precision. In the second part we show the slowdown and the
memory usage of our approach.

Precision: Table II summarizes results for our micro-
benchmarks grouped into 6 access categories, which are (if
applicable) further divided into:

• Locked: Accesses are contiguously locked.

• False lock: Accesses are protected with only one or
two different locks.

• Timed: Accesses are fully time synchronized.

• Partial locks: Not all accesses are protected by a lock.

• Gaps: The lock protecting the accesses is not contin-
uous.

Generally, CHESS and ITC deliver reliable results in cate-
gories where instructions are not locked correctly. However, in
our evaluation they missed all order and atomicity violations
in which all accesses were discretely locked. HCorr is able
to detect these races but occasionally misses some in various
categories. We ascribe this behavior to incorrectly recognized
computational units. Our detector is not dependent on recog-
nizing computational units for race detection. Therefore, our
approach delivers better overall precision. Only in the category
of two fully locked concurrent increments does our race
detector deliver false positives. In that category, we can observe
a harmless non-deterministic read. Since our approach cannot
distinguish between harmful and harmless non-deterministic
reads, it reports a race condition.

Thread A
Acquire Lock

if Instance ==
null then

Instance =
newInstance();

end
end

end

Thread B
Acquire Lock

if Instance ==
null then

Instance =
newInstance();

end
end

end

Fig. 12. A harmless non-deterministic read on the variable Instance in
both threads.

Our tool HCorr CHESS ITC
Program Total

Races
FN FP FN FP FN FP FN FP

Micro
Bench-
marks

153 11 5 32 7 103 5 110 5

Synch. 0 0 0 0 0 0 0 0 0
Unsynch. 22 2 0 3 1 0 0 12 2
Locked 22 2 0 22 0 0 0 0 0
Gaps 22 0 2 11 0 22 0 22 0
Corrs 15 1 1 3 0 9 0 14 0
PetriDish 5 0 2 3 10 5 0 4 3
KeyPassLib 10 2 8 1 14 3 8 5 3
STP 15 1 6 5 10 4 0 10 2
Total 242 19 24 80 42 146 13 177 15

TABLE III. FALSE POSITIVES AND FALSE NEGATIVES REGARDING
RACE DETECTION.

Table III summarizes the actual numbers of false positives
and false negatives that occurred during the race detection
for all evaluated programs. Our race detector has by far the
lowest number of false negatives. The false negatives of our
dynamic approach are race conditions that lie on unvisited
(unexecuted) control flow branches. Because our race detector
just follows the control flow of the current execution it is
unable to find race conditions on unexecuted paths. CHESS
executes the code several times and has more coverage of the
control flow. Inside the programs during execution the decision
which branch to take depends on the scheduling of threads.
Therefore it is able to detect some races our detector misses.
ITC and HCorr on the other hand have the same limitation as
our approach: All race conditions our race detector misses are
also missed by ITC and HCorr. The false race conditions come
from harmless (intentional) non-deterministic reads inside the
programs. Figure 12 shows such an encountered harmless non-
deterministic read. Each thread executes a write access on
Instance in parallel to a read access in the other thread:
The read can either acquire the value null or the instantiated
object. Hence, the read access on Instance in each thread
is non-deterministic. But because the if-clause handles this
non-determinism the non-deterministic read is harmless. Also
the other detectors cannot distinguish between potentially
harmful and harmless race conditions. Therefore, they share
some of the encountered false positives. These are mainly
false positives involving unlocked accesses that do not include
correlations. Generally, we expect our approach to deliver
many false positives in server-side programs, that naturally
introduce much harmless non-determinism (remind figure 5 as
an example).
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Fig. 13. Memory consumption (top) and speed (bottom) in comparison to
other detectors.

Memory and time overhead: Figure 13 illustrates the slow-
down and the memory usage of our dynamic race detection
in comparison to the other detectors. The observed slowdown
of our dynamic race detection varies from a factor of 17 to
425, depending on the analyzed program. We observed that the
more threads, more synchronizations and higher percentage of
shared variables a program contains the slower our implemen-
tation gets. The worst case scenario is represented by the stress
test in which several threads repeatedly create objects and
access their shared field variables. Remarkably, the stress test,
which was the worst case scenario for our approach, turned
out to have an even greater impact on other race detectors:
HCorr raised to a factor of 14500 while CHESS proved to be
not scalable at all and crashed. We were not able to measure
the time for the stress test for CHESS. Only ITC’s slowdown
was comparatively unaffected by the stress test. Despite the
overall high slowdown, our approach is able to compete with
HCorr, CHESS and Intel Thread Checker. CHESS performs a
faster analysis only on the program Locked. We observed, that
CHESS operates faster the fewer synchronization operations
and thread switches a program execution contains. As the
program Locked contains only a few contiguous locks which
cover most of the code, during execution we observe few
synchronizations and few thread switches.

Furthermore, the observed memory usage of our implemen-
tation ranges between 4 to 6 times the original memory. Only
CHESS consumes less memory for its analysis. The memory
usage of HCorr is slightly higher but tends to be comparatively

close to our approach. ITC, on the other hand, consumes far
more memory than any of the race detectors.

Because our algorithm showed to be not scalable with
regard to the slowdown we consider it most suitable for parallel
unit tests [22]: They represent small parallel program fractions
which need to be checked for concurrency bugs. As these tests
are very small, we can use them to find data races in large
and complex software programs. We aim to use our detector
in conjunction with some recent tools for automatic generation
of parallel unit tests [23], [24].

C. Correlation Detection

This section describes the results of our dynamic correla-
tion detection. Since we have already presented the slowdown
of our race detector, we evaluate the results according to
correctness and completeness. Since CHESS relies on user
annotations for identifying correlations and ITC does not
support correlations at all, we compared our results only to
HCorr. For our evaluation we considered correlations that have
been violated by a race condition. In this sense a false negative
means, that a detector failed to identify a violated correlation.
Analogously, a false positive is an identified correlation which
has not been violated.

Table IV shows the number of false positives and false
negatives regarding the reported correlations. Our approach
misses purely logical correlations, i.e. correlations without any
data or control dependency. Obviously, our approach restricts
itself to identify control and data dependencies only. Therefore
our approach misses the violated logical correlations inside
the programs. Since HCorr also does not consider logical
dependencies, it shares these false negatives with our approach.

Thread A
Euro = 300;
Yen = Euro∗107;
Dollar = Yen/97;

end

Fig. 14. Transitive data depen-
dency from Euro to Dollar.

Correlations established by
transitive dependencies are an-
other source of false negatives.
For example in Figure 14, Euro
and Y en as well as Y en and
Dollar are directly data de-
pendent on each other. How-
ever, there is also a transitive
dependency between Euro and
Dollar. Our approach misses
such dependencies and, thus, the corresponding correlations.
Potentially, HCorr considers transitive dependencies and is
able to detect the encountered false negatives. However, the
detector is strongly dependent on the correct recognition of
computational units. Since recognizing computational units
in runtime is difficult, HCorr also missed some transitive
correlations. For this reason HCorr exhibits several other
false negatives of correlations which our approach correctly
identified.

Falsely recognized parental correlations are a source of
false positives: Closely written variables, which share the same
parent are, contrary to our assumption, not correlated. An
example is the variable for a person’s hair and the variable for a
person’s size which are written subsequently but do not share
any logical dependency. We did not observe false positives
caused by correlations identified by other patterns. However,
we expected this result: The other patterns require direct
data dependencies between the values of the corresponding



Our tool HCorr

Program # Corr. Violations FN FP FN FP
Micro Benchmarks 209 33 23 36 59
Synch. 0 0 0 0 0
Unsynch. 30 10 0 12 6
Locked 0 0 0 0 0
Gaps 30 10 0 16 4
Corr. 38 7 3 8 13
KeyPassLib. 21 9 5 7 6
PetriDish 12 7 2 9 1
STP 33 14 3 17 2
Total 373 90 36 114 91

TABLE IV. NUMBER OF FALSE POSITIVES AND FALSE NEGATIVES
REGARDING VIOLATED CORRELATIONS.

variables. This naturally leads to a correlation between those
variables. During evaluation we even observed direct control
dependencies between two variables to necessary lead to a
correlation. The false positives of HCorr, on the other hand,
come from computational units that the approach has estimated
their scope to be too large. Therefore, it reports correlations
that have been unaffected by the race condition.

VII. CONCLUSION

In this paper, we introduced a general race detection
approach considering correlated variables. Our race detector
relies on a novel and precise concept of non-deterministic
reads. It enables us to identify race conditions, including those
that normally escape race detectors which ignore variable
correlations. In contrast to earlier approaches for correlated
variables, our approach does not rely on the successful iden-
tification of correlations. This makes it more reliable than
previous methods. Finally, our detector precisely recognizes
violated correlations at runtime. This enables developers to
better judge the effects of non-determinism in their programs.
In the future, we want to enhance our concept for identifying
correlations by considering transitive data dependencies and
static correlation detection. This enables us to take steps toward
identifying logical dependencies, further reducing our number
of false negatives. Furthermore, we want to reduce the number
of false positives our detector reports by excluding intentional
non-deterministic reads.
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