
A Dynamic Resource Management System for Network-Attached Accelerator
Clusters

Suraj Prabhakaran 1,a, Mohsin Iqbal 2,a, Sebastian Rinke 3,a, Felix Wolf 4,a

aGerman Research School for Simulation Sciences, Laboratory for Parallel Programming, 52062 Aachen, Germany
{1s.prabhakaran, 2m.iqbal, 3s.rinke, 4f.wolf}@grs-sim.de

Abstract—Over the years, cluster systems have become in-
creasingly heterogeneous by equipping cluster nodes with one
or more accelerators such as graphic processing units (GPU).
These devices are typically attached to a compute node
via PCI Express. As a consequence, batch systems such as
TORQUE/Maui and SLURM have been extended to be aware
of those additional resources tightly coupled with compute
nodes. Recent advances in accelerator technology have given
rise to the possibility of using network-attached accelerators
in addition to node-attached accelerators. However, current
batch systems do not support this new usage scenario of
accelerators. This work focuses on the support for batch
systems for allocating network-attached accelerators. The
most important feature of the proposed batch system is its
ability to dynamically allocate network-attached accelerators
to jobs at application runtime. We discuss our extensions to
the TORQUE and Maui batch system and elaborate on its
features in the Dynamic Accelerator-Cluster Architecture,
which describes an integration of network-attached acceler-
ators into a cluster system. We also evaluate the dynamic
allocation scenarios and show how batch systems can be
designed to provide support for more flexible and dynamic
cluster systems.

Keywords-dynamic resource management; dynamic
scheduling; heterogenous architectures;

I. INTRODUCTION

Accelerators such as graphics processing units (GPUs)
have seen successful integration into cluster systems over
the recent years. These devices have been able to improve
the overall system efficiency by offering increased com-
putational power at minimized energy consumption levels.
The Tianhe-1A system at the National Supercomputer
Center in Tianjin is a prominent example of an accelerator-
equipped supercomputer. These devices are attached lo-
cally to the compute nodes through PCI Express and can
be programmed with familiar programming models such
as CUDA and OpenCL. Typically compute clusters are
composed of nodes with and without accelerators attached
to them. In such systems, the batch system is responsible
for good job distribution such that only jobs requiring
accelerators are placed in the nodes that contain them.
This ensures efficient use of the cluster resources for
any workload that contains a mix of jobs with varying
accelerator requirements. Schedulers such as Maui [1]
with the TORQUE [2] resource management system and
SLURM [3] are examples of batch systems that deliver
this functionality.

With recent developments in accelerator hardware,
network-attached accelerators, for example, based on the
Intel MIC architecture, have become a feasible solution.

Unlike a GPU, they can autonomously communicate over
the cluster network without requiring a separate host CPU
for managing network transfers. State of the art in this field
is the ongoing DEEP project [4], which investigates Intel
Xeon Phi processors as the basic component of network-
attached accelerators. With a novel cluster-booster system
architecture, the DEEP project strives to better meet the
accelerator requirements of scientific applications with
respect to traditional accelerator-equipped clusters. Re-
garding the efforts of vendors in this area, not only Intel
but also Nvidia is working on accelerators capable of
initiating network communication. Here, Nvidia’s Project
Denver [5] is developing a device containing both CPU
and GPU on the same chip.

The primary advantage of deploying network-attached
accelerators is that compute nodes are not bound to use
only the limited number of node-attached accelerators.
They may offload computations to as many network-
attached accelerators available in the entire cluster. The
potential bandwidth penalty between host and acceler-
ator may be hidden using techniques such as double
buffering or by longer kernel runtimes. The latter can
be achieved by having the main program offload multiple
kernels in parallel to a set of network-attached accelerators
that communicate directly with each other (e.g., through
the well-known MPI). Such MPI kernels can run for
an extended period of time without involving the host.
Recent works have given rise to high bandwidth cluster
interconnects which may well support such architectures.
The ongoing DEEP project is an example where such an
architecture is under investigation with a high-bandwidth
EXTOLL interconnect. Furthermore, such an architecture
also enables flexible accelerator usage scenarios where
applications have the possibility to adjust the number of
accelerators assigned to them at runtime. For example,
additional accelerators could be associated with compute
nodes running the job when a computational phase of
the application demands more accelerators. Since dynamic
provisioning of cluster resources can also improve fault
tolerance and optimize energy consumption, it is consid-
ered as one of the important aspects in reaching exas-
cale [6]. Current batch systems lack both the awareness
of network-attached accelerators and dynamic allocation
of resources and therefore cannot support such flexible
usage scenarios.

Based on the current trends in accelerator hardware and
the above usage scenario of network-attached accelera-
tors, we have developed a dynamic batch system aware

of network-attached accelerators, which is based on the
TORQUE resource manager and the Maui scheduler. Our
batch system assigns accelerators to jobs both statically
before the job start or dynamically during the runtime
based on the application demands. In our previous work
we proposed one of the first architectures to integrate
network-attached accelerators into cluster systems called
as the Dynamic Accelerator-Cluster (DAC) Architecture.
Similar to the DEEP cluster, the DAC Architecture enables
computational offloading on network-attached accelerators
with static and dynamic allocation of accelerators to
compute nodes. While the DEEP cluster is based on Intel’s
MIC Architecture and the special EXTOLL interconnect,
the DAC Architecture focuses on using network-attached
accelerators that can be realized using currently available
cluster components. Applications have also been able to
obtain profitable speedups using multiple accelerators in
the DAC Architecture [7]. Our batch system has been
successfully used in this architecture and thus, can support
an heterogeneous cluster consisting of both node-attached
and network-attached accelerators.

In the past (detailed in Section V), dynamic allocation
has been primarily studied as scheduling problem. Imple-
menting a dynamic allocation mechanism in a resource
management system (RMS) has often been neglected in
such projects as it is rather complicated. They lack the
functionality to dynamically associate and disassociate
nodes to a job due to their inherent design to support
only static allocations. In our work, we have extended the
TORQUE RMS and the Maui scheduler to support the
dynamic allocation of network-attached accelerators. We
have extended the TORQUE RMS with functionalities to
dynamically request and allocate network-attached accel-
erators to a job. Also, protocols to dynamically associate
and disassociate nodes to a job have been developed.
Similarly, the Maui scheduler has been enhanced with
features to dynamically allocate resources for an already
running job. In this paper, we present our contributions to
the TORQUE/Maui batch system for enabling dynamic al-
locations and evaluate them in a DAC Architecture testbed.
By that, we show how batch systems can be designed to
be more flexible in accordance with the dynamic usage
scenarios of future HPC systems.

The remainder of this article is organized as follows.
In Section II, we present an overview of the Dynamic
Accelerator-Cluster Architecture and briefly describe its
implementation. In Section III we give an overview of
our dynamic batch system and demonstrate its usage
under the DAC Architecture. In Section IV we discuss
the performance of our batch system, with the focus on
the dynamic resource allocation scenarios. We review the
related work in Section V and finally conclude with an
outlook in Section VI.

II. DYNAMIC ACCELERATOR-CLUSTER
ARCHITECTURE

In this section, we briefly describe the Dynamic
Accelerator-Cluster Architecture which enables the inte-

CN	

AC	

CN	

CN	

CN	

AC	

Interconnect	

ARM	

AC	

(a) The DAC Architecture.

NIC	
 CPU	
 RAM	

GPU	

(b) Accelerator.

Figure 1. The components of the Dynamic Accelerator-Cluster Archi-
tecture.

gration of network-attached accelerators into cluster sys-
tems.

A. Overview

The Dynamic Accelerator-Cluster (DAC) Architecture
describes a generic architecture for using network-attached
accelerators in a flexible manner. It provides an accel-
erator independent programming model to offload com-
putations onto network-attached accelerators. Under this
architecture, a pool of network-attached accelerators is
maintained by an Accelerator Resource Manager (ARM)
which allocates the accelerators to compute nodes based
on application requirements. Figure 1(a) shows a pictorial
representation of the architecture. The compute nodes
(CN) represented in the architecture are identical to their
counterparts in current cluster environments. The acceler-
ators (AC) represented in this architecture are not bound
to be a particular type of accelerator. In its current imple-
mentation, the DAC Architecture uses GPUs attached to a
host as a network-attached accelerator. The programming
model, thereby, enables a transparent mechanism to of-
fload computations onto remote GPUs. Figure 1(b) depicts
the network-attached accelerator consisting of a host CPU
and a GPU as used in this implementation. The ARM
resembles a resource management system. It maintains
information about the accelerators and is responsible for
handling allocation and deallocation requests from the
compute nodes.

B. Execution Model and Accelerator Assignment Strate-
gies

The execution model of this architecture consists of
three steps: (i) accelerator allocation, (ii) accelerator usage
and (iii) accelerator deallocation. Accelerator allocation
can be carried out in two distinct assignment strategies.
In the static assignment strategy, the required number of
accelerators is allocated to compute nodes before job start.
These accelerators remain allocated to the compute nodes
until job termination. The compute nodes are provided
with a computation API similar to CUDA and OpenCL
to offload work onto accelerators. In order to identify
accelerators, a unique handle for each allocated accel-
erator is used with the API. In the dynamic assignment
strategy, the accelerators are (de)allocated at job runtime.
Compute nodes send a runtime request to the ARM to
acquire new accelerators. Note that, it is not guaranteed
that a dynamically requested resource will always be

CN	

AC	

CN	

CN	

CN	

AC	

Interconnect	

ARM	

1	

2	

AC	

(a) Static assignment.

CN	

CN	

CN	

CN	

Interconnect	

ARM	

1	

2	

3	

AC	

AC	

AC	

(b) Dynamic assignment.

Figure 2. Static (a) and dynamic (b) accelerator assignment. Different
shadings denote different jobs. Dashed lines denote communication
before job start, whereas solid lines denote communication at runtime [7].

Daemon	

MPI	

CUDA	
 GPU	

CUDA	

Driver	
 API	

Accelerators	

Applica7on	

API	

MPI	

Interconnect	

Compute	
 node	

So;ware	

Daemon	

MPI	

CUDA	

Driver	
 API	

CUDA	
 GPU	
 Hardware	
 CUDA	
 GPU	

Daemon	

MPI	

CUDA	

Driver	
 API	

Front-­‐end	
 Back-­‐end	

Figure 3. Dynamic accelerator-cluster software architecture with CUDA
back-end [7].

available for the application. Subject to availability, the
ARM allocates the resources to the requesting compute
node. When the requested number of accelerators is not
available, the ARM rejects the request. Therefore, users
also take into account that the dynamic requests may not
always be successful. When a dynamic request is rejected,
the application continues its execution with the existing
allocated accelerators. When the dynamically allocated
accelerators are not needed anymore, the compute nodes
can release the accelerators. For dynamic (de)allocation
the compute nodes use a resource management API which
complements the computation API. A prototypical imple-
mentation of the ARM was developed to enable the static
and dynamic allocation strategies. Figure 2 illustrates the
static and the dynamic assignment scenarios as explained
above. Dashed lines between the ARM and the compute
nodes represent communication before job start as in
the case of a static assignment. Solid lines between the
ARM and the compute nodes represent communication at
runtime depicting a dynamic assignment.

C. Implementation

As stated earlier, the current version of the DAC Ar-
chitecture enables computation offloading to the network-

attached accelerators consisting of a CUDA-enabled GPU.
Computations are CUDA kernels which are executed on
the remote GPU. The computation API provides function-
ality to (i) allocate memory on the accelerators, (ii) copy
data to or from accelerators and (iii) launch compute ker-
nels on the accelerators. Figure 3 illustrates the software
stack of the DAC Architecture. It consists of a front-end on
every compute node and a back-end on every accelerator.
The front-end translates API calls into requests which
are redirected to the back-end, where a daemon receives
those requests and executes them on the CUDA-enabled
GPU using the CUDA driver API. The front-end uniquely
identifies the back-end through a handle and enables a
transparent communication between the compute node and
the accelerator. Listing 1 illustrates the usage of both
the computation and the resource management API with
regards to using a remote CUDA-enabled GPU. Here, sim-
ilar to CUDA, a computation kernel is executed on the ac-
celerator after allocating memory and transferring data to
the device. After the kernel execution is complete, data is
transferred back and the memory is freed. The ac handle
uniquely identifies the accelerator on which the operations
are to be performed. The actual communication between
the compute nodes and the accelerators is accomplished
through a distinct communication protocol based on MPI.
Clearly, for the compute nodes to be able to communicate
to the daemons running in the accelerator through MPI,
they have to reside in the same MPI communicator. A
resource management library, which makes use of MPI-
2 dynamic process management facilities, is provided to
the compute nodes to establish this transparently with the
accelerators.

Listing 1. Example program on the Dynamic-Accelerator Cluster
Architecture.

void main (i n t argc , char ∗∗ a rgv) {

/∗ I n i t t h e a c c e l e r a t o r s ∗ /
AC Ini t (& a c h a n d l e) ;
. . .
/∗ A l l o c a t e memory on d e v i c e ∗ /
acMemAlloc (cudaMal loc a rgs , a c h a n d l e) ;

/∗ T r a n s f e r memory t o d e v i c e ∗ /
acMemCpy (cudaMemcpy args , a c h a n d l e) ;

/∗ E x e c u t e k e r n e l ∗ /
a c K e r n e l C r e a t e (k name , a c h a n d l e) ;
a c K e r n e l S e t A r g s (k a r g s) ;
acKerne lRun (k name , dimGrid , dimBlock) ;

/∗ T r a n s f e r memory t o h o s t ∗ /
acMemCpy (cudaMemcpy args , a c h a n d l e) ;

/∗ Free memory on d e v i c e ∗ /
acMemFree (c u d a F r e e a r g s , a c h a n d l e) ;
. . .

/∗ Get more a c c e l e r a t o r s ∗ /
AC Get (count , &ac handle new) ;
. . .
/∗ Free t h e d y n a m i c a l l y o b t a i n e d a c c e l e r a t o r s ∗ /
AC Free(& ac handle new) ;

/∗ F i n a l i z e ∗ /
AC Fina l i ze (& a c h a n d l e) ;

}

The resource management API marginally differs with
the computation API in its naming conventions. The
AC_Init() initializes the accelerator usage for the com-
putation API after creating an MPI communicator with
the statically allocated accelerators and providing a valid
ac handle. The AC_Get() call is used to dynamically
request additional accelerators from the ARM. Users may
use the AC_Free() call to release dynamically as-
signed accelerators. The AC_Finalize() routine must
be called at the end and releases all the associated accel-
erators.

In enabling batch system support for the DAC Archi-
tecture, the functions of prototypical ARM is completely
integrated in the batch system. The resource management
library communicates directly with the batch system. Also,
note that while using remote GPUs involves additional
communication overhead through the cluster interconnect,
computationally intensive applications can still benefit
from using multiple accelerators. In particular, multiple
accelerators can also be used with latency hiding tech-
niques to reduce the visible communication overhead.
Furthermore, the implementation also provides an efficient
communication protocol which includes pipelining large
data transfers, thereby optimizing the overall data transfer.
These are described in [7].

III. THE DYNAMIC BATCH SCHEDULER

In this section, we present our extended TORQUE/Maui
batch system supporting both static and dynamic allocation
of network-attached accelerators. We start by providing an
overview of the TORQUE/Maui batch system and proceed
to describe our extensions. We demonstrate the functioning
of our batch system by means of an example job using
one compute node requiring x statically allocated and y
dynamically allocated network-attached accelerators.

A. Overview of the TORQUE/Maui Batch System

The TORQUE Resource Manager [2] is a commonly
used open-source resource manager for cluster systems.
It is based on the PBS project [8] extended to improve
scalability and fault tolerance and is currently maintained
by Adaptive Computing. TORQUE also contains a basic
FIFO scheduler but is generally integrated with a scheduler
package like the Maui scheduler [1]. The Maui scheduler
provides advanced scheduling features such as job priori-
tization, fairshare and backfill scheduling which improves
the overall system utilization as compared to TORQUE’s
FIFO scheduler. Considering the large popularity of the
TORQUE/Maui batch system in more than hundreds of
cluster systems (including GPU clusters) all over the
world, we chose to use it for supporting network-attached
accelerators. A TORQUE/Maui cluster consists of a
headnode and many compute nodes. The headnode runs
the pbs_server daemon (server) and the compute
nodes run pbs_mom daemon (mom). Client commands
for submitting and managing jobs can be installed on
any host including the headnode. The headnode also runs

mom	
 mom	
 mom	
 mom	
 maui	
 server	

qsub	

Mother	
 Superior	

JOIN_JOB	

Start	
 execu:on	

Submit	
 job	

Schedule	
 job	

	
 Send	
 job	

Figure 4. Typical workflow of a job scheduling in the TORQUE/Maui
batch system.

the Maui scheduler daemon. The scheduler interacts with
the server and makes decisions on resource usage and
allocation of nodes to jobs. The typical work flow of
job scheduling in a TORQUE/Maui cluster is enumerated
below and illustrated in Figure 4.

1) Users submit jobs with the qsub command indicat-
ing the number of nodes (k) and the cores per node
(q) required by the job.
qsub -l nodes=k:ppn=q jobscript.sh

2) The server takes the request and stores the job
information such as job submission time, resources
required, etc, internally as job attributes. The job is
then enqueued for resource allocation.

3) The Maui scheduler retrieves the list of queued jobs
and the status of all the resources in the cluster
from the server. It allocates resources to the jobs
based on various site-specific policies and sends the
information about the allocated resources for each
queued job to the server.

4) The server reads the list of allocated hosts for a
job and selects the pbs_mom running in one of the
allocated hosts as the mother superior and sends it
the complete job information (including the list of
allocated hosts).

5) The mother superior, on receiving the instruction to
run a job, first connects with each mom running
on the other allocated hosts. The connection is
established by sending what is called a JOIN_JOB
request along with the job information.

6) After successful connection with all the moms, the
mother superior starts the execution of the job script.

Once execution begins, the job can retrieve many in-
formation about its TORQUE environment by querying
various environment variables set by the mom. For exam-
ple, PBS_JOBID contains the global job-ID set by the
pbs_server for this job. Typically, MPI jobs look into
the PBS_NODEFILE environment variable which points
to a file containing the list of hosts allocated for this job.
All the processes of a job can communicate with their local
pbs_mom through a TM API and communicate directly
to the server through the Interface Library (IFL) API.
For example, user can alter specific job attributes through
pbs_alterjob() call which is equivalent to qalter
client command.

B. Extensions for Allocation of Network-Attached Accel-
erators

To support the use of network-attached accelerators, we
have enabled the TORQUE/Maui batch system with an

mom	

CN	

mom	

AC	

mom	

AC	

mom	

AC	
 maui	
 server	

qsub	

Mother	
 Superior	

JOIN_JOB	
 Start	
 execu<on	

Submit	
 DAC	

job	

Schedule	
 job	

	
 Send	
 job	

start	
 	
 daemons	

AC_Init()	

MPI	
 Communic	
 ator	
 crea<on	

Figure 5. Workflow of a static allocation scenario.

overall awareness of the DAC execution environment and
extended it to perform the static and dynamic assignment
facilities. For the static assignment, before executing the
application on the compute nodes, TORQUE ensures that
appropriate daemons are started on the accelerators in
order to be used by the compute nodes. We have extended
the server and the moms to perform the above in the
DAC environment. The dynamic (de)allocation requires
the batch system to be capable of advanced functionalities
such as:

• a way to submit dynamic requests to TORQUE,
• dynamic scheduling capabilities in Maui, and
• dynamic (dis)association of resources to a job in

TORQUE.
We extended TORQUE’s Interface Library with a new call
to request additional resources from a job executing in the
DAC environment. The resource management library uses
the pbs_dynget() call to request additional accelera-
tors. The Maui scheduler has been extended to operate
on such dynamic requests submitted to the server and
schedules them with top priority among all the jobs wait-
ing for resources in the queue. Finally, we introduced the
capabilities for dynamic addition of resources into a job
by the moms executing the job. Similarly, to dynamically
release accelerators, the pbs_dynfree() call has been
added to the Interface Library and the moms have been
extended with capabilities to dynamically disassociate
from a job.

C. Static Allocation of Network-Attached Accelerators

In the static allocation scenario, a job requests a partic-
ular number of network-attached accelerators during job
submission time. The job is not executed until all the
required resources are available. During the job start, the
resource management library establishes the association
with the accelerators. Users may then use the compute
node API to offload computations to the accelerators. We
consider the example of one compute node requesting x
accelerators and describe the functioning of both the batch
system and the resource management library, individually,
in assigning the accelerators to the compute node. Figure
5 illustrates the scenario with one compute node statically
associating with three accelerators.

Batch System: The user requests a DAC execution
environment using the extended qsub command as shown
below.

mom	

CN	

mom	

AC	

mom	

AC	

mom	

AC	
 maui	
 server	

Mother	
 Superior	

DYNJOIN_JOB	

Schedule	
 job	

	
 Send	

More	

resources	

AC_Get()	

Spawn	
 	

daemons	
 and	
 	
 	
 create	
 MPI	

communicator	

Reply	
 client-­‐id	

JOIN_JOB	

AC_Init()	

Figure 6. Workflow of a dynamic allocation scenario.

qsub -l nodes=1:acpn=x jobscript.sh

The acpn job attribute indicates the request of x network-
attached accelerators per compute node. For a multi-
compute node job with k compute nodes, this request
would mean a total of k compute nodes and k × x
accelerators for the job. The server then enqueues
the job for scheduling. The Maui scheduler allocates the
required resources and informs the server. The server
selects the mother superior (which is always a com-
pute node) and forwards the job information. Once the
moms JOIN with each other, the mother superior
invokes the execution of accelerator daemons the accel-
erator nodes. The daemons are started such that each set
of the accelerators to be associated with a compute node
is contained under a single MPI_COMM_WORLD. The user
application is then started on the compute nodes and the
resource management library establishes the connections
with the daemons.

Resource Management Library: As stated earlier, the
resource management library uses MPI-2 dynamic pro-
cess management facilities to enable a persistent con-
nection between the compute nodes and the accelerators.
Once the daemons are started, the root (MPI rank 0)
of the accelerator daemons opens an MPI port (using
MPI_Open_port()). The port information is made
available to the compute nodes through a file. When
AC_Init() call is invoked, the compute nodes retrieve
the port information and establish the connection through
MPI_Comm_connect()/MPI_Comm_accept(). The
inter-communicator returned through this operation is
used to create an intra-communicator through the
MPI_Intercomm_merge(). In the new MPI intra-
communicator, the compute node holds the rank 0 while
all the other accelerators have a unique rank ranging from
1 to x. The handle to each accelerator consists of its unique
rank in this communicator and is further used by the
computation library to transfer data and execute kernels.

While the above scenario exemplifies a job with a single
compute node, the process is essentially the same for a
multi-compute node job. Each compute node would be
associated to x accelerators with a distinct MPI commu-
nicator from the other compute nodes. In other words, one
compute node cannot access the accelerators associated to
the other compute nodes. When the job terminates, all the
resources used by the job are released and made available

for other jobs.

D. Dynamic Allocation of Network-Attached Accelerators

In the dynamic allocation scenario, compute nodes send
a runtime request to the server for a definite number
of additional accelerators through the AC_Get() routine.
Upon allocation, the accelerators are associated with the
requesting job and made available for use by the compute
nodes. As explained for the static case, we consider
an example of an application with one compute node
and x statically allocated accelerators, which dynamically
requests y additional accelerators. Figure 6 illustrates the
dynamic allocation scenario of a compute node with one
statically allocated accelerator, requesting two additional
accelerators. Dashed lines represent communication after
the AC_Get() call and the solid lines indicate commu-
nication before the call during static allocation.

Batch System: The resource management library sends
the request for y additional accelerators through the
pbs_dynget() routine which blocks until a response
has been received from the server. Upon receiving the
request, the server enqueues the job again with a
special dynamically queued state and the Maui scheduler
allocates resources for the dynamically queued jobs with
top priority. The server is then informed of the allo-
cated resources, which then forwards the information to
the mother superior of the job that requested the
additional accelerators. Once the information has been
successfully forwarded, the server responds to the com-
pute node with a client-id which uniquely identifies this
request and its set of dynamically allocated accelerators.
The mother superior then sends a DYNJOIN_JOB
message to the newly allocated accelerators and also
updates the existing moms with the addition of resources
for this job. Preparing the accelerators with the daemons
and establishing connection with them is performed by the
resource management library. When not enough resources
could be allocated for the job, the server rejects the
request immediately with a negative valued reply. In this
case, the application continues to execute with the already
allocated accelerators as stated earlier.

Resource Management Library: Once the additional
accelerators have been allocated, the resource management
library spawns the accelerator daemons on the nodes
through the MPI_Comm_spawn() call. This call
returns an MPI inter-communicator with the accelerator
daemons, once they have executed MPI_Init().
The compute node, its existing accelerators and
the newly active accelerators participate in the
MPI_Intercomm_merge() call which results in
a new intra-communicator with the compute node and all
of its associated accelerators. In this intra-communicator,
the compute node still holds the MPI rank 0 and the old
accelerators hold their old MPI ranks ranging from 1 to
x. The newly added accelerators are assigned MPI ranks
ranging from x + 1 to x + y. Updated handles to the
statically assigned accelerators and the new handles to
the dynamically assigned accelerators are then returned

to the user. These can then be used by the computation
library.

We use MPI_Comm_spawn() instead of starting
the daemons through the moms as it enables an
easier way of creating the MPI communicators
as opposed to using MPI Ports and employing
MPI_Comm_connect()/MPI_Comm_accept()
which is unavoidable in the case of static assignment.

Due to the fact that MPI is used, a set of
dynamically allocated accelerators are started with
the accelerator daemons that are encompassed
in one MPI_COMM_WORLD. Therefore, when the
dynamically allocated accelerators are released, they
are released as a set identified by the client-id
through the AC_Free() call. The compute nodes
first disconnect from the to-be-released accelerators
through MPI_Comm_disconnect() and send the
server the client-id of the set of dynamically allocated
accelerators using the pbs_dynfree() call. The server
returns a positive reply to the compute node without
needing to enqueue the job again and initiates the process
of disassociating the accelerator nodes with the job while
the user application may continue to execute further.
To release the accelerators, the server instructs the
mother superior with the list of hosts that are to
be disassociated from the job. The mother superior
sends a DISJOIN_JOB message to the moms operating
on these hosts resulting in complete disassociation of
these moms from the job. The moms kill all the tasks
running on their host (typically any remains of the
accelerator daemons) and have its resources free for
other jobs. The mother superior also sends the
information to the other moms associated to the job so as
to update their database.

In the case of a multi-compute node job, each compute
node may use its own AC_Get() to obtain additional
accelerators. However, the server, is able to service
only one request at a time per job. This may lead to
long waiting time during the application runtime for
some compute nodes of the job until their additional
accelerators are allocated. This can be avoided using
AC_Get() collectively over all the compute nodes
that request additional accelerators. When requested
collectively, one compute node collects the information
about the number of accelerators required by each
compute node participating in the collective call, and
sends a single request to the server requesting the
total number of required accelerators. However, the
disadvantage is that either all the compute nodes get their
accelerators allocated or none, since the batch system
tries to allocate the total number of accelerators requested.
Also, since they all obtain the same client-id from the
server, they may be released only collectively.

E. Scheduling Mechanism

While TORQUE enables the association and disassoci-
ation of network-attached accelerators to an existing job,
the Maui scheduler is responsible for deciding whether

a particular dynamic request is eligible for extending its
resource set. We extended the Maui scheduler to schedule
and allocate resources for dynamic requests based on the
information forwarded by the TORQUE server.

Both dynamic and static requests are sent to the Maui
scheduler through the same queue. The static requests
(qsub requests) are in the queued state waiting for the
resources to be allocated by the scheduler. The dynamic
requests hold a special dynqueued state. After retrieving
the current queue information, the scheduler proceeds to
prioritize the jobs based on the system policies. In our
current implementation, a basic dynamic priority mecha-
nism places the dynamic requests higher in the queue as
compared to the static requests. The dynamic requests are
ordered in FIFO manner. While such a policy is not the
best for a production system, it serves as a basic mech-
anism from which more sophisticated dynamic allocation
algorithms can be built upon in the Maui scheduler in the
future.

In our approach, we do not use advanced reservation
techniques for dynamic allocations. This is because, the
main objective is to provide flexible usage scenarios to
evolving jobs in the DAC architecture. More precisely, at
job submission, the application need not know whether
or how many dynamic allocations it may require during
its execution. The decision to request more resources can
be done at runtime without any prior indications to the
batch system. Therefore, neither is a dynamic request
guaranteed to be satisfied nor will it wait in the queue until
the requested resources are available. As stated earlier in
Section II-B, when the request cannot be satisfied, Maui
rejects the request and the application resumes execution
with its existing resource set. Our future version of the
Maui scheduler will contain optimal dynamic scheduling
strategy which takes both system performance and fairness
into consideration.

IV. EXPERIMENTAL EVALUATION

In this section, we present a quantitative description of
the performance of our dynamic batch system in enabling
static and dynamic allocation of network-attached acceler-
ators to compute nodes under the DAC environment. Due
to the novelty of this usage scenario, real world applica-
tions that use network-attached accelerators are still under
development in various projects (e.g., the DEEP Project).
In our evaluations, we examine the overhead of the dy-
namic resource allocation under various circumstances in
a cluster environment with sample programs and discuss
its impact on real world applications, as compared to other
works that mainly simulated the dynamic allocations.

For all our experiments, we used 8 nodes with 2 Intel
X5570 processors at 2.93 GHz and with 24 GiB RAM
each. All the nodes ran GNU/Linux 2.6.35 (Ubuntu 10.10).
As MPI implementation, we used Open MPI 1.6.2. Our
experiments to evaluate the batch system’s performance
did not require the physical presence of an accelerator in
these nodes. Out of the 8 nodes, one node was designated
as the server. It ran the pbs_server daemon and

the Maui scheduler daemon. The same node was used
as the front end. The rest of the 7 nodes were used as
both compute nodes and network-attached accelerators in
different test scenarios but never at the same time. All the
results are an average over 10 trials.

In principle, when submitting a job, if all the required
resources are readily available, the time taken to obtain
the required nodes and start execution depends only on the
rate at which (i) the server processes the request, (ii)
the resources are allocated by the Maui scheduler and (iii)
the moms get the job information and join with each other.
All of the above involve communication over the network
between the batch system components. If all the required
resources were not available, the request stays queued at
the server until these resources become available. Since
in the static allocation scenario the required number of
accelerators are known prior to the job start, the server
does not start the job until all the required resources are
available. Thus, the static allocation scenario is similar to
the traditional way of job submission, and therefore is af-
fected by the same parameters as mentioned above. How-
ever, to complete the static allocation, users need to call the
AC_Init(). Depending upon the number of accelerators
requested, the AC_Init() call waits until all the acceler-
ator daemons that were started on the accelerator nodes are
ready to get connected to the compute node through the
MPI_Comm_connect()/MPI_Comm_accept() rou-
tines. Figure 7(a) depicts the time for completion of an
AC_Init() for various numbers of statically allocated
accelerators ranging from 1 to 6. The dark shaded region
depicts the amount of time spent by the call in only waiting
until all the accelerator daemons were prepared in the
remote nodes and were ready to establish a connection
with the compute node. The lighter region depicts the
time consumed in establishing the MPI communicator with
the compute node. We can observe that the waiting time
dominates the total time taken and generally increases with
increasing number of accelerators. However, statically
allocating as many as 6 accelerators requires only around
0.3 seconds.

On the other hand, the dynamic allocation scenario
introduces longer waiting time since it includes the time
taken by the batch system to allocate additional resources
for the job and involves the moms to join with each other
before the accelerator daemon can be spawned on the
host. Figure 7(b) shows the time taken for dynamically
obtaining 1 to 6 accelerators by a compute node. The
dark shaded part of the graph indicates the waiting time
while the lighter regions represent the time spent in
performing the MPI operations, i.e., spawning and creating
MPI communicators. Naturally, the dynamic allocation of
accelerators by the batch system dominates the overall
time taken and increases with the increasing number of ac-
celerators. The time spent performing the MPI operations
is more or less the same in all the cases. While the time
taken for dynamic allocation is much larger compared to
the AC_Init() in a static allocation, it still ranges only
in sub-seconds for obtaining as many as 6 accelerators

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 3 4 5 6

T
im

e
 [
s
e
c
]

Number of accelerators

Waiting time
Connect time

(a) Time for completion of AC Init().

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6

T
im

e
 [
s
e
c
]

Number of accelerators

Batch System
Resource Management Library

(b) Time for completion of dynamic
request.

Figure 7. Time for completion of static and dynamic requests for various
number of accelerators.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 16 20

T
im

e
 [
s
e
c
]

Number of jobs on load

Time taken by Maui to schedule other requests
Time taken to service the dynamic request

Figure 8. Time taken to dynamcially allocate one accelerator under
different load in the batch system.

dynamically. However, the test was made under an ideal
scenario where the scheduler and the resource manager
are not working on scheduling jobs from a workload.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A B C

T
im

e
 [
s
e
c
]

Compute node

Time taken for dynamic allocation

Figure 9. Time taken for completion of consecutive dynamic requests
from three distinct compute nodes.

To test the behavior of dynamic allocation in the pres-
ence of other workload, we combined the scenario of dy-
namically requesting one accelerator from a compute node
along with large amount of other qsub requests. Since the
Maui scheduler always treats the dynamic requests from

the DAC environment with top priority, when a dynamic
request and other qsub requests arrive in parallel, the
dynamic request will primarily be granted the resources.
Therefore, the time taken for the dynamic allocation in
such a scenario is similar to the time taken in the absence
of any other workload. The workloads may affect the
performance of a dynamic allocation request only when
the dynamic request arrives at the server when the
scheduler is already working on allocating resources for
the earlier requests. This causes additional waiting time
to the dynamic allocation. In Figure 8, we see the effects
of the delay introduced in the dynamic scheduling due to
the scheduler working on allocating resources for 16 and
20 other qsub requests. For this case we also took care
that none of the 16 or 20 jobs interfere with the compute
node or the accelerator node running under the DAC envi-
ronment. The lightly shaded region depicts the time spent
by the scheduler in servicing the earlier qsub requests
and darker regions show the time spent on servicing the
dynamic request. Clearly, the larger the workload handled
by Maui at the time of arrival of the dynamic request,
the longer the waiting time for the dynamic request to be
serviced.

Finally, Figure 9 compares the time taken for dynamic
allocation of one accelerator (excluding the time consumed
by the MPI operations) in the case of three compute
nodes (A, B and C) from three distinct jobs sending
a dynamic request each during the same time. Clearly,
due the serial processing of the dynamic requests by the
server, compute node C, as shown in the graph, suffered
a longer waiting time.

In general, we can observe from all the scenarios that
the time taken for dynamic allocation of accelerators to
compute nodes usually lie in the range of sub-seconds. For
real-world applications, such an overhead is negligible and
may be traded off for an availability of more resources to
offload computations.

V. RELATED WORK

Efficient resource management for heterogeneous clus-
ter systems is a field well-investigated due to the rise in
the usage of accelerators in the recent years. In our efforts,
we focus on integrating network-attached accelerators in
cluster systems and providing flexibility in using them.
At the time of writing, we are not aware of any other
frameworks that use network-attached accelerators and
support both static allocation before job start and dynamic
allocation during runtime.

With regards to using remote GPUs, Zillians Inc. ad-
vertised a solution called V-GPU [9] for dynamic GPU
provisioning in clouds which enables clients or compute
nodes to offload computations onto remote GPUs. Similar
to the DAC Architecture, the number of GPUs associated
with the clients can be reconfigured at runtime. However,
at the time of writing, neither the software itself nor any in-
formation on the dynamic resource handling mechanisms
have been published. Other GPU virtualization frame-
works, such as rCuda [10], vCuda [11], and MGP [12]

enable computation offloading on remote GPUs. However
they do not support dynamic allocation of remote GPUs
to compute nodes.

Other efforts to introduce flexibility in heterogeneous
clusters mainly proposed solutions for effective scheduling
for dynamic allocations in [13], [14] and [15]. Even in
homogeneous clusters, dynamic resource allocation was
mainly studied as a scheduling problem for evolving and
malleable applications in [16] [17] [18]. This is mainly
due to the technical challenges involved in enabling these
features in a resource management system. However, the
focus of our work was on enabling the dynamic resource
allocation facilities in the resource manager through which
we understand the practical advantages and challenges.
While we do not provide the best scheduling policy for
dynamic requests by giving them top priority, we plan to
implement a better policy in the future.

In the similar lines, Cera et al. [19] developed support
for malleable MPI applications in the OAR resource
manager. MPI applications can acquire resources through
MPI_Comm_spawn() and new processes can be started
on the newly available resources. While we provide the
same for the network-attached accelerators in the DAC en-
vironment, with little extensions to our modified TORQUE
resource manager, any malleable application could be
supported. Our extensions to TORQUE is not restricted
to be used only with the Maui scheduler. Any scheduler
capable of dynamic scheduling and allocation can be
integrated with our version of TORQUE. Since TORQUE
is already widely used in many cluster systems around
the world, such a portable solution comes only as an
advantage.

VI. CONCLUSION AND OUTLOOK

During the last couple of years, accelerators have gained
increased importance and already play a vital role in
today’s heterogeneous cluster systems. Given the recent
advances in accelerator technology, network-attached ac-
celerators seem to be one of the next logical steps.
Integrating these devices in cluster systems requires the
support of the batch system to fully leverage those new
resources and their usage scenarios. In this paper, we
presented a dynamic batch system based on TORQUE and
Maui which integrates the use of network-attached accel-
erators. Independent of the architecture of the accelerators
in the system, we showed how our batch system can be
seamlessly used for flexible accelerator usage scenarios,
as demonstrated with the Dynamic Accelerator-Cluster
Architecture. Such a dynamic allocation and deallocation
facility contributes to optimized utilization of cluster re-
sources. The experimental evaluations clearly show that
the overhead of dynamic allocation of accelerators is
negligible for real-world applications as the time con-
sumed for dynamic allocations lie in the range of sub-
seconds. Our batch system can be successfully installed
on heterogeneous clusters employing both node-attached
and network-attached accelerators. In the future, we plan
to improve our batch system with fault tolerance and better

scheduling policies which includes allocating less number
of accelerators in the case where enough accelerators were
not available during a dynamic request. As scheduling
dynamic requests with top priority may lead to unfair
usage scenarios, we plan to build better scheduling policies
taking fairshare into account. Along with it, we also
plan to extend our batch system to support evolving and
malleable jobs under any execution environment in cluster
systems. Considering the wide acceptability of TORQUE/-
Maui batch system, we believe that our improved batch
system could be easily deployed in production systems.

ACKNOWLEDGMENTS

The research leading to these results has received
funding from the European Community’s Seventh Frame-
work Program (FP7/2007-2013) under Grant Agreement
n◦ 287530.

REFERENCES

[1] D. B. Jackson, Q. Snell, and M. J. Clement, “Core algo-
rithms of the maui scheduler,” in Revised Papers from the
7th International Workshop on Job Scheduling Strategies
for Parallel Processing, ser. JSSPP ’01. Springer-Verlag,
2001, pp. 87–102.

[2] G. Staples, “Torque resource manager,” in Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, ser.
SC ’06. ACM, 2006.

[3] M. A. Jette, A. B. Yoo, and M. Grondona, “Slurm: Sim-
ple linux utility for resource management,” in In Lecture
Notes in Computer Science: Proceedings of Job Scheduling
Strategies for Parallel Processing (JSSPP) 2003. Springer-
Verlag, 2002, pp. 44–60.

[4] D. A. Mallon, N. Eicker, M. E. Innocenti, G. Lapenta,
T. Lippert, and E. Suarez, “On the scalability of the
clusters-booster concept: a critical assessment of the deep
architecture,” in Proceedings of the Future HPC Systems:
the Challenges of Power-Constrained Performance, ser.
FutureHPC ’12. ACM, 2012, pp. 3:1–3:10.

[5] Nvidia. Project denver. http://blogs.nvidia.com/2011/01/project-
denver-processor-to-usher-in-new-era-of-computing/.

[6] J. Dongarra and et al., “The international exascale software
project roadmap,” International Journal on High Perfor-
mance Computing Applications, pp. 3–60, 2011.

[7] S. Rinke, D. Becker, T. Lippert, S. Prabhakaran, L. West-
phal, and F. Wolf, “A dynamic accelerator-cluster archi-
tecture,” in Proceedings of the 2012 41st International
Conference on Parallel Processing Workshops, ser. ICPPW
’12. IEEE Computer Society, 2012, pp. 357–366.

[8] R. L. Henderson, “Job scheduling under the portable batch
system,” in Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, ser. IPPS ’95. Springer-
Verlag, 1995, pp. 279–294.

[9] Zillians. (2011) V-GPU. http://www.zillians.com/vgpu/.
[Online]. Available: http://www.zillians.com/vgpu/

[10] J. Duato, A. J. Pena, F. Silla, J. C. Fernandez, R. Mayo,
and E. S. Quintana-Orti, “Enabling cuda acceleration within
virtual machines using rcuda,” in Proceedings of the 2011
18th International Conference on High Performance Com-
puting, ser. HIPC ’11. IEEE Computer Society, 2011, pp.
1–10.

[11] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU accelerated
high performance computing in virtual machines,” in Proc.
of the International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2009.

[12] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh, “A package
for OpenCL based heterogeneous computing on clusters
with many GPU devices,” in Proc. of the International
Conference on Cluster Computing (PPAAC Workshop).
IEEE, Sep. 2010.

[13] D. Kumar, Z.-Y. Shae, and H. Jamjoom, “Scheduling batch
and heterogeneous jobs with runtime elasticity in a par-
allel processing environment,” in Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW),
2012 IEEE 26th International, may 2012, pp. 65 –78.

[14] S.-S. Boutammine, D. Millot, and C. Parrot, “A runtime
scheduling method for dynamic and heterogeneous plat-
forms,” in Parallel Processing Workshops, 2006. ICPP
2006 Workshops. 2006 International Conference on, 2006,
pp. 8 pp. –282.

[15] L. Barsanti and A. C. Sodan, “Adaptive job scheduling via
predictive job resource allocation,” in Scheduling Strategies

for Parallel Processing. Springer Verlag, 2006, pp. 115–
140.

[16] C. Klein and C. Pérez, “Towards scheduling evolving
applications,” in Proceedings of the 2011 international con-
ference on Parallel Processing, ser. Euro-Par’11. Springer-
Verlag, 2012, pp. 117–127.

[17] B.-P. Gan and S.-Y. Huang, “Scheduling dynamically
evolving parallel programs using the genetic approach,”
in High Performance Computing in the Asia-Pacific Re-
gion, 2000. Proceedings. The Fourth International Confer-
ence/Exhibition on, vol. 1, 2000.

[18] J. Hungershofer, “On the combined scheduling of malleable
and rigid jobs,” in Computer Architecture and High Per-
formance Computing, 2004. SBAC-PAD 2004. 16th Sym-
posium on, 2004, pp. 206–213.

[19] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, and
P. O. A. Navaux, “Supporting malleability in parallel ar-
chitectures with dynamic cpusets mapping and dynamic
mpi,” in Proceedings of the 11th international conference
on Distributed computing and networking, ser. ICDCN’10.
Springer-Verlag, 2010, pp. 242–257.

