
A Cross-Platform Framework for Interactive Ray Tracing

Markus Geimer Stefan M̈uller

Institut für Computervisualistik
Universiẗat Koblenz-Landau

Abstract: Recent research has shown that it is possible to use ray tracing to render
complex scenes at interactive frame rates by efficiently exploiting the computational
resources provided by current CPUs. However, these implementations are usually
written with just a single hardware platform in mind.

In order to overcome this situation, we present a framework that allows easy cross-
platform programming of the SIMD instruction sets made available by many of today’s
CPUs. Although this framework is geared towards our needs in ray tracing, it might
be used in other contexts as well. Currently it supports SSE, AltiVec and an FPU
emulation mode, but can be easily extended to use other SIMD instruction sets. In
addition, we demonstrate how this framework can be used to implement an efficient
scene traversal scheme based on a bounding volume hierarchy of axis-aligned boxes,
which is the core of our ray tracing system.

As a result, we show that our implementation is able to render medium sized scenes
at interactive frame rates on various hardware platforms using only a single CPU, even
without any dedicated optimizations such as fine-tuning the cache usage. Because our
system can be further improved in many different ways, this approach seems to be
promising regarding the use of interactive ray tracing in heterogeneous environments.

1 Introduction

Ray tracing has the reputation of being a very time-consuming algorithm. Since its intro-
duction to the field of computer graphics through [Wh80], a lot of research has been done
to speed up the ray-scene intersection process by utilizing additional data structures, such
as grids, octrees, bounding volume hierarchies, or BSP trees (see [Gl89] for an overview).
Nevertheless, for a long time ray tracing has been judged not to be suitable for the use in
interactive applications.

Recently, [Pa99] showed that it is possible to achieve interactive frame rates using a full-
featured ray tracer on a shared-memory supercomputer. Their implementation is able to
handle arbitrary geometry including parametric surfaces and volume objects, but is care-
fully optimized for cache performance, i.e. taking advantage of data cache coherency and
eliminating false sharing. They proved that ray tracing scales well in the number of proces-
sors and that even complex scenes of up to 35 million spheres can be rendered at approx.
15 frames per second. However, they had to use very expensive high-end hardware to
achieve this goal.

By contrast, [Wa01, WSB01] implemented a highly optimized ray tracer running on a
cluster of commodity PCs. Their system extensively uses Intel’s Streaming SIMD Exten-
sions (SSE) to trace packets of rays in parallel. By using explicit data management and
prefetching instructions, they are able to hide most of the network and memory latencies.
Additionally, they paid careful attention to the layout of their data structures to reduce
memory bandwidth requirements that turned out to be the main limitation with respect to
rendering performance in traditional ray tracing implementations. However, this system is
restricted to x86 architectures supporting SSE.

Another interesting approach introduced by [Pu02] is the use of programmable graphics
hardware to implement ray tracing. As graphics processors (GPUs) usually provide a high
degree of parallelism, they seem to be well suited for inherently parallel algorithms such
as ray tracing. Unfortunately, it is somewhat difficult to efficiently implement traditional
scene traversal schemes due to the lack of important functionality on current GPUs, such
as flow control in fragment programs. This can only be accomplished by using multiple
rendering passes, thus reducing performance. Nonetheless, recent research (e.g. [Bo03,
KW03, Pu03]) indicates that this technology offers a great potential.

Anyhow, in this paper we focus on a pure software solution. We present a framework that
allows easy cross-platform programming of the SIMD instruction sets provided by many
of today’s CPUs. Although this framework is geared towards our needs in ray tracing, it
might be used in other contexts as well. Furthermore, we demonstrate how this framework
can be applied to implement an efficient scene traversal scheme based on bounding volume
hierarchies using axis-aligned boxes, which is the core of our ray tracing system.

As a result, we show that our implementation is able to render medium sized scenes at in-
teractive frame rates on various hardware platforms using only a single CPU, even without
any dedicated optimizations such as fine-tuning the cache usage. In addition, we present
several possible improvements to our system, indicating that this approach seems to be
promising regarding the use of interactive ray tracing in heterogeneous environments.

2 SIMD Abstraction Framework

Today, many CPUs offer specific instruction sets for SIMD computations, i.e. the identical
processing of several data elements in parallel with a single machine instruction. Well
known examples are Intel’s Streaming SIMD Extensions [In03] and Motorola’s AltiVec
[Mo99]. Since the basic functionality provided by these instruction sets is almost identical,
it seems quite natural to implement a library that abstracts from the minor differences on
the machine level and permits easy cross-platform programming.

Currently, our framework includes support for three different instruction sets: AltiVec,
SSE and an emulation mode that uses the FPU. The latter can be used to compile programs
on any unsupported hardware platform. Moreover, we apply it to compare the efficiency
of the SIMD code to a serialized version, although it should be noted that this gives only a
coarse approximation, since the SIMD programming model imposes some constraints on
the implementation creating additional overhead.

Our C++ library provides three new data types:float4 , int4 andbool4 , each one
representing a vector of four independent values of the corresponding fundamental data
type. Additional types such asshort8 or char16 could be defined in a similar way if
required. Currently, the SIMD abstraction library consists of approx. 45 routines providing
the usual arithmetic and bitwise logical operators, comparison functions as well as routines
for accessing the individual components of a vector type. Additionally, it contains three
new boolean operators to test if none, at least one or all components of abool4 aretrue .

To avoid any unnecessary function call overhead, all routines are implemented as inline
functions. The main advantage of inline functions over preprocessor macros is that they
enable the compiler to do some type-checking, which can be helpful during development.
Moreover, it allows us to emulate functionality that is not directly available on a specific
platform using a more readable syntax. For example, the AltiVecvec select operation
can be expressed by a sequence of three SSE commands. Even so, most functions map
directly to the corresponding intrinsics, the high-level language interfaces defined by Intel
[In03] resp. Motorola [Mo99] to access their SIMD instructions in a C-like fashion.

Using the intrinsics API has several advantages: First of all, it is easier to program using
a C-like interface than writing assembler code. Secondly, the intrinsics are supported by a
couple of different compilers, whereas their inline assembler interfaces differ severely thus
making the code even more portable. Last but not least, intrinsics enable the compiler to
further optimize the code, because it completely handles register allocation and instruction
scheduling.

Since the code of only a few functions can be shared among the different architectures
(AltiVec, SSE, FPU), each platform has its own implementation of most of the library
routines. These are selected via conditional compilation. This way it is fairly easy to add
support for other SIMD instruction sets, such as AMD’s 3DNow! [Ad00] or MIPS-3D
[MI00]. It should even be possible to implement a backend for programmable graphics
hardware, although this will probably not be very efficient.

In order to be accessed without performance penalty, all of the SIMD data types need to
be properly aligned on a 16-byte boundary on the examined architectures. This issue is
handled by the compiler in the case of static resp. automatic variables. Additionally, it
takes care of the correct padding when using SIMD data types in structures or as class
members. Nevertheless, we have to be careful when allocating objects dynamically, as we
have to ensure that all objects start at a valid address. Therefore, our library also provides
routines for aligned memory allocation.

3 The Ray Tracing Core

In this section we present our cross-platform ray tracing implementation based on the
SIMD abstraction framework described above. We start with a brief overview of the over-
all system architecture. Afterwards we discuss some important issues in more detail:
Memory layout of our basic data structures and scene traversal using bounding volume
hierarchies.

3.1 System Architecture

Our main goal was to implement a ray tracing system that is able to achieve a reasonable
performance on all of the supported platforms. Therefore, we had to do some careful
coding to efficiently use the capabilities of the different architectures. For example, on the
lowest level we apply thevec nmsub instruction (negative multiply and subtract) of the
AltiVec instruction set to implement a SIMD cross product. This saves three instructions
compared to a naive implementation using six multiplies and three subtractions, while not
having any performance impact on platforms where this instruction is emulated.

Although ray tracing is capable of rendering arbitrary geometry, we restricted ourselves
to triangles. This simplifies the design and avoids branching in the inner loop of our ray
tracing core. As processor pipelines get longer, this becomes more and more important on
modern CPUs. Hardware features, such as branch prediction and instruction reordering,
try to avoid pipeline stalls that decrease performance but their success is strongly depen-
dent on the input code. As a general rule, code should be organized to execute in tight
loops with few conditionals. Besides, using only triangles seems to be common practice.

In order to render a single frame, we divide the ray tracing process into three consecutive
steps, each done for the entire image:

1. Generate eye rays
2. Find closest intersections (if existent)
3. Shade intersection points resp. store background color

Using this decomposition, we are likely to reduce cache misses due to the smaller working
data set of each step, which will result in a performance gain. Although our system traces
only primary rays at the moment, it is possible to use this decomposition scheme to handle
secondary rays as well. In principle, all three steps can be parallelized using multiple
threads, although the time needed for eye ray generation is neglectable compared to the
total frame rendering time. However, our implementation currently does not support multi-
threading.

Similar to [Wa01], we trace packets of four rays in a data parallel way. This applies to
the bounding volume hierarchy traversal as well as the ray-triangle intersection testing. To
do the latter, a large variety of different algorithms have been proposed. We have chosen
the method of [MT97], since it has proven to be very fast and is pretty straightforward to
implement using the SIMD framework described in the previous section.

As we use a simple pinhole camera model for eye ray generation, all four rays in such
a packet have the same origin. If we connect the intersection points of a ray packet to a
single light source, this is also true for shadow rays. This reduces memory requirements
for these ray packets and can be exploited in the intersection tests as well (section 3.3).

For shading, we use the well-known Phong reflection model [Ph75]. Since the (at most)
four intersection points can have different material properties, data has to be rearranged in
order to be processed using the SIMD programming model. This results in some overhead
for the setup, but the actual shading computation can then be implemented very efficiently.
However, since our shading code is not fully optimized yet, we will not go into more detail
in this paper.

3.2 Memory Layout

In order to avoid any unnecessary memory access penalties, we have to take some care
of the layout of our basic data structures. As already stated before, all data structures
containing SIMD data types have to be properly aligned on a 16-byte boundary. Otherwise,
accessing the data will be very slow. Therefore, we pay careful attention on padding our
data structures to be a multiple of 16 bytes in size and arrange them in arrays to reduce the
overhead due to the alignment.

For instance, the information of a single triangle can be expressed by 9 floats (36 bytes).
We pad this data to a total of 48 bytes, storing one vertex and the two edge vectors in
separate 16-byte blocks. Beyond that, the memory used for padding keeps additional
information that will be useful, such as the triangle id.

As can be seen from the example above, we store data together only if it is used together,
i.e. the vertex normals and the material properties used for shading are not part of the
triangle data but are kept separately. So we avoid loading data that will not be used, since
data transfer between main memory and the caches is always performed in entire cache
lines of at least 32 bytes.

3.3 Hierarchy Traversal

As already stated before, we employ a hierarchy of axis-aligned bounding boxes to speed
up the ray-scene intersection process. We have chosen the bounding volume hierarchy
(BVH) mainly because the traversal can be expressed by a simple and compact iterative
algorithm, which is essential for an effective SIMD implementation. This is in contrast to
other widely used acceleration structures such as grids and octrees, where each ray in a
packet may traverse a different voxel in the next iteration, thus requiring a non-trivial state
management. Only BSP trees have a traversal algorithm that has shown to be suitable for
an efficient SIMD implementation. However, there are a lot of existing applications using
BVHs that might directly benefit from our approach.

To build up the hierarchy, we use a slightly modified version of the construction algorithm
proposed by [GS87]. After inserting all triangles into the BVH using the cost-function
based heuristic, we additionally sort the children of each node by their surface area in
decreasing order. This increases the probability of finding a ray-object intersection early in
the traversal process, which gives us an upper bound on the ray length. In our experiments,
this reduced the time needed for ray casting by up to 10 percent, depending on the model.

The traversal of our hierarchy is done in depth-first order. If any ray of a packet hits a
node, all four rays will continue the traversal of its children. We also tried the traversal
scheme proposed by [KK86], but this approach nearly doubled the time needed for ray
casting. This is due to the necessary sorting when inserting a bounding box into the heap,
which is non-trivial for a packet of up to four ray-box intersection points. Beyond that, the
heap management requires additional memory bandwidth.

The simplest way to traverse a hierarchy in depth-first order is to use recursion. However,
this appoach suffers from a severe function call overhead. Therefore, we changed the
representation of the BVH into an array as described by [Sm98]. Here, all nodes are
stored in depth-first order. In addition, each node has an associated skip pointer that points
to the next bounding volume that has to be processed if the ray misses the current box and
we therefore skip the underlying subtree. This leads to the following compact iterative
traversal algorithm:

void traverse(Rays& rays, Hits& hits) {
Box* box = rootnode;

while (box != stopnode) {
if (box->intersect(rays)) {

if (box->hasGeometry())
box->triangleList()->intersect(rays, hits);

box++;
} else {

box = box->skip();
}

}
}

Using the array representation has several advantages: First, since we access at least parts
of the array in a sequential manner, we may benefit from the hardware prefetchers built
into modern CPUs that load possibly needed data into the caches in advance. Secondly,
the memory usage of each hierarchy node is fixed and reduced to a minimum, regardless
of the number of children. We only have to store the minimum and maximum values along
each axis, the skip pointer and a pointer to the geometry. Since a single pointer can be kept
in one component of our SIMD vector types, we do not need any padding, thus giving a
total of 32 bytes per node.

As a positive side effect, the size of 32 bytes per node is advantageous with respect to cache
performance, since this equals exactly the size of a single cache line on many of today’s
CPUs. As a special exception to the rules presented in section 3.2, we therefore align the
hierarchy array on a 32-byte boundary. This prevents the bounding boxes to accidentally
straddle a cache line boundary, which would decrease performance.

The ray-box intersection testing is done using the slab algorithm presented by [KK86]. As
pointed out by [Sm98], it can be further optimized by taking advantage of the properties
of the IEEE floating-point standard. Using the min/max operations provided by the SIMD
instruction sets, this test can be done very efficiently without any explicit branching:

bool Box::intersect(Rays& rays) {
float4 origin = rays.origins(X);
float4 invDir = rays.invDirs(X);
float4 lambda1 = mul(sub(splat(boxMin, X), origin), invDir);
float4 lambda2 = mul(sub(splat(boxMax, X), origin), invDir);
float4 lmin = min(lambda1, lambda2);
float4 lmax = max(lambda1, lambda2);

for (int axis = Y; axis <= Z; axis++) {
origin = rays.origins(axis);
invDir = rays.invDirs(axis);
lambda1 = mul(sub(splat(boxMin, axis), origin), invDir);
lambda2 = mul(sub(splat(boxMax, axis), origin), invDir);
lmin = max(min(lambda1, lambda2), lmin);
lmax = min(max(lambda1, lambda2), lmax);

}

return any(and(cmplt(lmin, lmax), cmpgt(lmax, 0)));
}

However, during our experiments we found out that using a more conservative estimate
resulted in better performance. By replacing thereturn statement with

return !(all_ge(lmin, lmax) || all_le(lmax, 0));

we incorrectly classify some ray packets as hitting the box, thus doing more traversal
steps than necessary. Nevertheless, since this is a very rare case when tracing packets of
coherent rays, we benefit from the short-cut evaluation of the expression.

Note that the ray-box intersection code can be further improved for primary and shadow
rays, because they all have the same origin. If the components of the origin are stored
in the same layout as the extents of the bounding box, the subtractions ofboxMin resp.
boxMax and the origin can be done at the beginning of the routine, thus saving two data
fetches and four subtractions.

4 Results

In this section we present some results measured with our ray tracing implementation that
uses the techniques described in this paper. The numbers are based on the ’balls’, ’rings’
and ’tree’ scenes (Figure 1) from the well-known Standard Procedural Databases package
proposed by [Ha87]. The screen resolution was fixed to 512×512 pixels for all tests.

Figure 1: The ’balls’, ’rings’, and ’tree’ models (from left to right) consist of roughly 1.4M, 874k,
and 1.7M triangles. The ’tree’ scene is lit by seven, the other two models by three light sources.

0 0,5 1 1,5 2 2,5 3 3,5 4
Avg. frame rendering time (s)

balls

rings

tree

FPU SIMD

0 2 4 6 8 10 12
Avg. frame rendering time (s)

balls

rings

tree

FPU SIMD

Figure 2: Average frame rendering times for the Xeon machine (left) and the G4 (right), comparing
the SIMD implementation with the FPU emulation mode.

Our experiments were performed on the following platforms: The SSE version of our ray
tracer was executed under Linux on a dual processor Xeon machine running at 3.06 GHz.
This system has 1 GB of memory. The AltiVec tests were measured under Mac OS X on a
dual processor PowerMac G4 running at 1 GHz with 1.5 GB of main memory. Since our
ray tracing system does not implement multi-threading yet, only one of the processors is
used on both platforms. To compile the code, we used the GNU C++ compiler v3.3.

First, we present the results measured on the Xeon machine (Figure 2, left). Using the
FPU emulation mode, this system needs average frame rendering times between 2.1 and
3.9 seconds for the three models. When using the SIMD code, these times drop down to
0.58–1 seconds, which gives a total speedup by a factor of 2.4–3.9. Considering only the
times for the ray casting step, we achieve a speedup of even 5.2–6.1. This indicates that
we efficiently utilize the SSE unit of the Xeon processor.

By contrast, the PowerMac G4 needs approx. 3–11 seconds to render a single frame when
using the FPU emulation (Figure 2, right), which is far from interactive. Surprisingly, the
G4 performed very well when using the AltiVec enabled version of our code. In this case,
we are able to achieve a speedup by a factor of 4–8.1 depending on the model, resulting
in average frame rendering times of 0.7–1.4 seconds, which is quite competitive. Again,
looking at the ray casting times only, the speedup is in the range of 8–11.

These numbers show that ray tracing is well suited for the SIMD programming model.
Keeping in mind that our shading code is not fully optimized yet, these results indicate
that our cross-platform approach is rather promising for future work.

5 Future Work

Since our SIMD ray tracing implementation is still at an early stage of development, there
is much room left for improvements, both in terms of rendering performance and image
quality.

As already stated before, all steps of our frame rendering process could be parallelized by
using multiple threads. First experiments indicate that this will nearly double the frame
rates on our test platforms. Consequently, the next step would then be to distribute the
calculation on a cluster or, since our implementation is already cross-platform, on a net-
work of heterogeneous machines. In addition, we could integrate software prefetching
instructions into the code to further improve cache efficiency.

Another interesting approach we will investigate in the future, is the integration of hard-
ware support into our ray tracing implementation by using GPUs to do at least parts of the
computation. Similar work has already been done by [CHH02], but we believe that this
technology offers even more potential.

In terms of image quality, a ray tracer will not be complete without shadows, reflection
and refraction. Additionally, it would be interesting to investigate how global illumination
algorithms, such as path tracing or photon mapping, can be adjusted to take advantage of
a fast SIMD ray tracing core that relies on packets of coherent rays.

6 Conclusion

For a long time, ray tracing was thought of being too costly to be used in interactive
applications. However, recent research has shown that it is possible to achieve interactive
frame rates by efficiently using the resources provided by current hardware. Unfortunately,
all these implementations are usually written with just a single platform in mind.

The main goal of this paper was to show that it is possible to achieve interactive frame rates
using a cross-platform ray tracing implementation. We presented a library that provides
an easy way of programming the SIMD instruction sets available on many of today’s
CPUs, using a higher-level interface. Currently, this library supports two different SIMD
architectures and an FPU emulation mode, but can be easily extended to other instruction
sets as well.

Furthermore, we have demonstrated that hierarchies of axis-aligned bounding boxes are
well suited for a SIMD implementation, tracing packets of four rays in a data parallel way.
Storing the nodes in an array in depth-first order, the ray-scene traversal can be expressed
by a simple and compact iterative algorithm. In addition, we contributed a SIMD ray-box
intersection code without any branching instructions that can be executed very efficiently.

We believe that this cross-platform SIMD approach is promising regarding the application
of interactive ray tracing in heterogeneous environments.

Acknowledgements

We would like to thank Marcel Bresink for helping us with the final benchmarks on the
PowerMac G4.

References

[Ad00] Advanced Micro Devices, Inc.:3DNow! Technology Manual. 2000.

[Bo03] Bolz, J. et al.: Sparse matrix solvers on the GPU: Conjugate gradients and multigrid.
ACM Transactions on Graphics. 22(3):917–924. 2003. (Proceedings of ACM SIG-
GRAPH 2003).

[CHH02] Carr, N. A., Hall, J. D., and Hart, J. C.: The ray engine. In:Graphics Hardware. pages
37–46. 2002.

[Gl89] Glassner, A. S. (ed.):An Introduction to Ray Tracing. Academic Press. London. 1989.

[GS87] Goldsmith, J. and Salmon, J.: Automatic creation of object hierarchies for ray tracing.
IEEE Computer Graphics and Applications. 7(5):14–20. 1987.

[Ha87] Haines, E.: A proposal for standard graphics environments.IEEE Computer Graphics
and Applications. 7(11):3–5. 1987.

[In03] Intel Corp.:IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction
set reference. 2003.

[KK86] Kay, T. L. and Kajiya, J. T.: Ray tracing complex scenes. In:Computer Graphics. volume
20(4). pages 269–278. 1986. (Proceedings of ACM SIGGRAPH 1986).

[KW03] Krüger, J. and Westermann, R.: Linear algebra operators for GPU implementation of nu-
merical algorithms.ACM Transactions on Graphics. 22(3):908–916. 2003. (Proceedings
of ACM SIGGRAPH 2003).

[MI00] MIPS Technologies, Inc.:MIPS-3D Graphics Extension. 2000.

[Mo99] Motorola, Inc.:AltiVec Technology Programming Interface Manual. 1999.

[MT97] Möller, T. and Trumbore, B.: Fast, minimum storage ray/triangle intersection.journal of
graphics tools. 2(1):21–28. 1997.

[Ph75] Phong, B. T.: Illumination for computer generated pictures.Communications of the
ACM. 18(6):311–317. 1975.

[Pu02] Purcell, T. J. et al.: Ray tracing on programmable graphics hardware.ACM Transactions
on Graphics. 21(3):703–712. 2002. (Proceedings of ACM SIGGRAPH 2002).

[Pu03] Purcell, T. J. et al.: Photon mapping on programmable graphics hardware. In:Graphics
Hardware. pages 41–50. 2003.

[Pa99] Parker, S. et al.: Interactive ray tracing. In:Symposium on Interactive 3D Graphics.
pages 119–126. 1999.

[Sm98] Smits, B.: Efficiency issues for ray tracing.journal of graphics tools. 3(2):1–14. 1998.

[Wa01] Wald, I. et al.: Interactive rendering with coherent ray tracing. In:Computer Graphics
Forum. volume 20(3). pages 153–164. 2001.

[WSB01] Wald, I., Slusallek, P., and Benthin, C.: Interactive distributed ray tracing of highly
complex models. In:Proceedings of the 12th EUROGRAPHICS Workshop on Rendering.
pages 277–288. 2001.

[Wh80] Whitted, T.: An improved illumination model for shaded display.Communications of the
ACM. 23(6):343–349. 1980.

