
FORSCHUNGSZENTRUM JÜLICH GmbH
Jülich Supercomputing Centre

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

CESRI 2007 Research Report
Implementation and Validation of the
Extended Controlled Logical Clock

John C. Linford

FZJ-JSC-IB-2007-11

November 2007

(last change: 02.11.2007)

Contents

1 Abstract 1

2 Project Proposal and Overview 3

3 The Extended Controlled Logical Clock 5
3.1 The Clock Condition .. . 5
3.2 Forward Amortization 6
3.3 Backward Amortization 7
3.4 Collective Operations 7

4 Implementation 9
4.1 Forward Replay and Forward Amortization 12
4.2 Backwards Replay and Backwards Amortization 13

5 Acknowledgements 15

6 Biography 17

Bibliography 19

i

ii CONTENTS

List of Figures

3.1 Algorithm for backward amortization. 7

4.1 Program Class Diagram. 11
4.2 Datapoints Required During Backwards Amortization 13

iii

iv LIST OF FIGURES

List of Tables

4.1 Event sequences recorded for a few typical MPI operations. 9
4.2 Timestamps exchanged during forward amortization. 12
4.3 Timestamps exchanged during backward amortization. 13

v

vi LIST OF TABLES

Chapter 1

Abstract

CESRI is a fellowship opportunity sponsored by the NationalScience Foundation and managed by
the Institute of International Education for U.S. graduatestudents in science and engineering who
are seeking a quality hands-on international research experience in Austria, the Czech Republic,
Germany, Hungary, Poland, and Slovakia. The Extended Controlled Logical Clock is a method for
correcting invalid timestamps in event trace files during post-mortem performance analysis. Under
the CESRI 2007 program, I developed a highly-scalable implementation of the Extended Controlled
Logical Clock for use in theSCALASCA performance analysis toolkit and verified the method’s
applicability to real-world supercomputing applications. This document describes the theory of
the Extended Controlled Logical Clock and the design of a highly-scalable implemenation of the
algorithm. It also gives a narative description of the professional impact of the CESRI fellowship,
and the cultural and personal experiences which made my timeas a 2007 CESRI fellow exceptional.

1

2 CHAPTER 1. ABSTRACT

Chapter 2

Project Proposal and Overview

CESRI is a fellowship opportunity sponsored by the NationalScience Foundation and managed by
the Institute of International Education for U.S. graduatestudents in science and engineering who
are seeking a quality hands-on international research experience in Austria, the Czech Republic,
Germany, Hungary, Poland, and Slovakia. CESRI hopes to improve the expertise of the awardees as
scientists, help them think and analyze on a broader, globallevel, build individual and institutional
partnerships, and build dialogue between the scientific community in the U.S. and Central Europe.
My research proposal for the CESRI 2007 program was to “alleviate scalability, portability and
usability problems in high-performance computing software systems.” I achieved this by improv-
ing the SCalable performance Analysis of LArge SCale Applications (SCALASCA) toolkit, which
performs post-mortem analysis of message-passing applications. I implemented the Extended Con-
trolled Logical Clock as part ofSCALASCA and instrumented two multiphysics air quality models
with SCALASCA, demonstrating its applicability to massively-scalable,high-performance applica-
tions.

The purpose of this document is twofold. First, as a report onmy experiences as a CESRI 2007
fellow, it discusses the professional and academic gains which came through the CESRI program
and the personal experiences I had as an American researcherabroad. Second, as a technical report,
this document gives a detailed explanation of the Extended Controlled Logical Clock (ECLC) in
terms of theSCALASCA event model, and describes a highly-scalable implementation of theECLC

for use inSCALASCA.

The document is organized as follows. An introduction to theExtended Controlled Logical Clock
is given in Chapter 3, and a description of the implementation is given in Chapter 4. The narative
description of my personal and professional experience as aCESRI fellow is found in Chapter??
and Chapter??.

3

4 CHAPTER 2. PROJECT PROPOSAL AND OVERVIEW

Chapter 3

The Extended Controlled Logical Clock

Post-mortem analysis of message-passing applications provides measurements of wait-times. An
analysis of these wait-times can detect system errors and program design flaws in large-scale su-
percomputing applications, but the accuracy of the analysis depends on the comparability of event
timestamps taken on different processors. An inaccurate timestamp will not only dialate the interval
between events, but may alter the logical order of events, causing a message to appear to be received
before it is sent. This is a violation of theclock conditionwhich requires that when an evente with
timestampC(e) precedes an evente′ with timestampC(e′), thenC(e) < C(e′).

Unfortunately, processor clocks are often entirely non-synchronized or only synchronized in dis-
joint partitions (i.e., an SMP-node or multicore-chip). Clock synchronization protocols, such as
NTP [4], are typically too inaccurate for our purposes, but assuming that all local clocks on a paral-
lel machine run at different but constant speeds (i.e., drifts), their time can be described as a linear
function of the global time. This approach is used in the tracing library of theSCALASCA toolkit
[2], which performs offset measurements between all local clocks and an arbitrarily-chosen master
clock once at program initialization and once at program finalization. However, as the assumption
of constant drift is only an approximation, violations of the clock condition may still occur.

Thecontrolled logical clock(CLC) [5], an enhancement of Lamport’s logical clock [3], is a method
to retroactively correct timestamps violating the clock condition. The algorithm requires times-
tamps with limited errors (achievable through weak pre-synchronization) and a globally-unified
tracefile. Since modifying individual timestamps might dialate local time intervals and even in-
troduce new violations, the correction considers the context of the modified event by stretching
the local time axis in the immediate vicinity of the affectedevent. Theextended controlled logi-
cal clock (ECLC) [1] extends the controlled logical clock to apply to collective communication to
provide a more complete correction of realistic message-passing traces. In addition to broader ap-
plicability, theECLC algorithm operates on distributed trace files and thereforescales to thousands
of application processes.

3.1 The Clock Condition

A clock condition violationoccurs if the receive event of a message has an earlier timestamp than
its matching send event. That is, thehappened-beforerelatione → e′ [5] between two eventse
ande′ with their respective timestampsC(e) andC(e′) does not hold. A clock condition violation
between two events is defined as:

∃ e, e′ : e → e′ ∧ C(e) ≥ C(e′). (3.1)

The CLC algorithm restores the clock condition using happened-before relationships between dis-
tributed events derived from point-to-point communication event semantics. More precisely, if the

5

6 CHAPTER 3. THE EXTENDED CONTROLLED LOGICAL CLOCK

condition is violated for a send-receive event pair, the receive event is moved forward in time. This
adjustment is calledforward amortization. To preserve the length of intervals between local events,
events immediately preceding the corrected event are movedforward as well. This adjustment is
calledbackward amortization. A detailed description of theCLC algorithm and a review of further
synchronization approaches can be found in [5], [6], and [1].

3.2 Forward Amortization

Forward amortization is the process by which timestamps aremoved forward to maintain the clock
condition. Timestamps computed by theCLC are denoted by the symbolLC ′. LC ′ is modeled with
t as the wall clock time andT (t) as the global time to which the process clocksCi(t) (i = 0..n−1)
are synchronized. Next,n is the number of processes,e

j
i is the jth event on processi and so

E = {ej
i |i = 0..n− 1, j = 0..jmax(i)} is the set of all events in the trace. The set of matching send

and receive pairs is defined with

M = {(el
k, en

m)|el
k = send event,en

m = matching receive event}. (3.2)

Note that the send event always marks the beginning of a send operation whereas a receive event
marks the end of a receive operation.e

j
i is an internal event if it is neither a send nor a receive event.

δi is the minimal difference between two events on processi, andµk,i is the minimum message
delay of messages from processk to processi. Finally,γj

i is a control variable withγj
i ∈ [0, 1]. For

each process,LC ′

i is defined as

LC ′

i(e
j
i) :=

max(LC ′

k(e
l
k) + µk,i,

LC ′

i(e
j−1

i) + δi,

LC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))),

Ci(t(e
j
i))) if

el

k

∃ (el
k, e

j
i) ∈ M (3.3)

max(LC ′

i(e
j−1

i) + δi,

LC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))),

Ci(t(e
j
i))) otherwise. (3.4)

As can be seen, the algorithm consists of two equations. Equation (3.3) adjusts the timestamps
of receive events while Equation (3.4) modifies timestamps of internal and send events. Note that
for each process, the termsLC ′

i(e
j−1

i) + δi andLC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))) must be
omitted for the first event(j = 0).

Through the termCi(t(e
j
i)) in Equation (3.3) and Equation (3.4), the algorithm ensuresthat a

correction is only applied if the trace violates the clock condition. The new timestamps satisfy the
clock condition, since the termLC ′

k(e
l
k)+µk,i in Equation (3.3) ensures thatLC ′(ej

i) is put forward
compared toCi(t(e

j
i)) if needed in case of a clock condition violation. To ensure that the clock

does not stop after a clock condition violation, the termLC ′

i(e
j−1

i) + γ
j
i (Ci(t(e

j
i))−Ci(t(e

j−1

i))
in Equation (3.3) and Equation (3.4) approximates the duration of the original communication after
a clock condition violation. Rabenseifner describes the control mechanism andγj

i in more detail
in [6].

3.3. BACKWARD AMORTIZATION 7

3.3 Backward Amortization

Backward amortization is applied to smooth jump discontinuities caused during forward amortiza-
tion. This is done by distributing a jump of size∆t over an amortization intervalLA preceding
the violating receive event by using a process-local, piecewise linear correction. In Figure 3.1, the
horizontal axis representsLCb

i , which is equal toLC ′

i (i.e., the state after forward amortization)
but without the jump∆t at eventr. The vertical axis shows offsets toLCb

i after applying different
stages of backward amortization.

X

X

X

i ris3s2is1

Amortization interval LA

LCi
b

with LC i
b

:= LC’i without jump Δt

Jump Δt due to LC’k(ek
l)+μi.k in Eq.(3)

(LC’m(em
n) - μi.m)

Clocks – LCi
b

of process i

Corresponding receive

event , i.e., (s3,em
n) M∈

Clocks: LC i’

 LCi
I ideal backward amortization

 in the absence of conflicting sends

 LCi
A piece-wise linear

 backward amortization

Events : r = Receive event

 s = Send event

 i = Internal event

Figure 3.1: Algorithm for backward amortization.

In order to preserve the clock condition, the correction must not advance the timestamps of send
events farther thanLC ′

m − µi,m of the corresponding receive eventen
m of a processm. These

upper limits are shown as circled values above the locationsof the send events in Figure 3.1. If
these limits are smaller than the dashed-dotted line (here at eventss1 and s2), then a piecewise
linear interpolation function must be used, represented asa dotted line in Figure 3.1. If there are
no violating send events in the backward amortization interval of a processi, then an ideal linear
interpolation can be used (the dash-dotted line in Figure 3.1). For each receive event with a jump,
the backward amortization algorithm is applied independently. If there are additional receive events
inside the amortization interval during such a calculationstep, then these events can be treated like
internal events, because advancing the timestamp of a receive event further cannot violate the clock
condition.

3.4 Collective Operations

A single collective operation can be considered as a composition of many point-to-point commu-
nications. That is, ifS andR denote the set of send and receive events in a collective operation
instancei, respectively, then for each call to a collective operation, the set of all send-receive pairs
M is enlarged by addingS × R.

1-to-N:One root process sends its data toN other processes. Example areMPI Bcast,MPI Scatter,
andMPI Scatterv. S only contains the send event of the root process, whereasR contains re-
ceive events from all processes of the communicator with a data length greater than zero.

N-to-1: One root process receives its data fromN processes. Examples areMPI Reduce,MPI Gather,
andMPI Gatherv. R only contains the receive event on the root process.S is the set of send
events on all processes of the communicator with a data length greater zero. Given that the root
process is not allowed to exit the operation until the last process enters the operation, the latest en-
ter event is the relevant send event to fulfill the collectiveclock condition. Hence, ifS contains more
than one element, the termLC ′

k(e
l
k) + µk,i in Equation (3.3) must be replaced by the maximum of

LC ′

k(e
l
k) + µk,i over allel

k ∈ S.

8 CHAPTER 3. THE EXTENDED CONTROLLED LOGICAL CLOCK

N-to-N’: All processes of the communicator are sender and receiver. Examples areMPI Allreduce,
MPI Allgather, MPI Alltoall, andMPI Barrier with N’=N, and the variable length op-
erationsMPI Reduce scatter, MPI Allgatherv, andMPI Alltoallv. S andR are all
enter and collective exit events whose processes contribute input data or receive output data. For a
call toMPI Barrier, all processes of the communicator contribute toS andR.

Special cases:For MPI Scan andMPI Exscan, the set of messages added toM cannot be ex-
pressed as the Cartesian productS × R. These cases are currently ignored by theECLC algorithm
and therefore are not handled in our implementation. This functionality is a proposed future work.

Chapter 4

Implementation

The ECLC algorithm was implemented as part of theSCALASCA performance analysis toolkit, so
the implementation is described in terms of theSCALASCA event model. The Parallel Event Analy-
sis and Recognition Library (PEARL) [2] provides the necessary classes and methods to process and
operate on an event stream taken from a parallel trace file. For each individual event,SCALASCA

records at least a timestamp, the location (i.e., the process) causing the event, and the event type. De-
pending on the event type, additional information may be supplied. The event model distinguishes
between programming-model independent events, such as entering and exiting code regions, and
events related to MPI operations. The latter include eventsrepresenting point-to-point operations,
and the completion of collective operations.Collective exitevents are specializations of normal exit
events carrying additional information (i.e., the communicator) that allows us to identify concurrent
collective exits belonging to the same collective operation instance.

Because thePEARL encapsulation ofSCALASCA events does not provide methods for determining
the logical type (i.e. role) of an event in an event stream, a set of predicate functions to determine
the logical type of an event, based on the event type and code region where the event was produced,
were created. Every possible event is abstracted into one ofthree logical types: send, receive, and
internal. For example, an “enter” event may be the start of a collective communication operation
and therefore should be considered a “send” event when amortizing. This abstraction makes it
possible to express collective operations as compositionsof point-to-point operations. Table 4.1
gives the event sequences recorded for a few typical MPI operations.

Table 4.1: Event sequences recorded for a few typical MPI operations.

Function name Event sequence
MPI Send() (enter, send, exit)
MPI Recv() (enter, receive, exit)
MPI Allreduce() (enter, collective exit) for each participating process

PEARL’s parallel replay functionality is used to process each local tracefile in parallel, similar to
the approach used by theSCALASCA tracefile analyzer (see [2] for details). The parallel replay
approach has several important advantages. First, a single, globally-unified tracefile is not required,
which greatly improves scalability. Secondly, it requiresvery little overhead, so machines with
low per-process memory (e.g. IBM BlueGene/L) are supported. To perform a parallel replay, each
process reads the local tracefile into memory and traverses the event stream with an instance of
the PEARL Event iterator class. This approach requires exactly the same number of processes as
was used in the original application and guarantees scalability equal to or greater than the original
application scalability. For each communication event in the stream, the following algorithm is
applied:

1. Determine the logical type of the event based on event typeand code region

2. If the event is a logical “send” event:

9

10 CHAPTER 4. IMPLEMENTATION

(a) Perform a local forwards amortization

(b) Forward-replay the communication so the receiving process has the correct remote
timestamp

(c) Backwards-replay the communication and store the remote timestamp in a ring buffer

3. If the event is a logical “receive” event:

(a) Forward-replay the communication so the sending process has the correct remote times-
tamp

(b) Perform a local forwards amortization

(c) Backwards-replay the communication and store the remote timestamp in a ring buffer

(d) Detect any jump discontinuity and perform backwards amortization if required

4. If the event is a logical “internal” event: Perform a localforwards amortization

The control mechanism used for the extended controlled logical clock requires a global view of
the trace data to calculateγi. Establishing a global view of the trace data is not feasiblewith the
replay-based approach since communication would be required for every single event. This can be
solved by performing multiple passes until the maximum error e is below a predefined thresholdǫ.
In this implementation,γ is fixed atγ = 0.99, but implementing the iterative control mechanism is
trivial and will be done in future work.

At this time, theSCALASCA cannot record measurements of communication latency and minimum
time between local events. It is impossible to calculate per-processδ andµ without this information,
so the current implementation used fixed values ofδ = 1.0× 10−9 andµ = 1.0× 10−6. Extending
SCALASCA andPEARL to make such measurements available is a topic of current research, and the
ECLC implementation is designed to accept these values as parameters when they become available.

Listing 4.1: UsingSynchronizer with PEARL

1 / / I n i t i a l i z e g l o b a l d e f i n i t i o n s
2 Globa lDefs∗ de f s = new Globa lDefs (a r c h i v e) ;
3 / / Prepare t he l o c a l t r a c e
4 Loca lT race∗ t r a c e = new Loca lT race (∗ defs , a r c h i ve , rank) ;
5 / / Make sure c a l l t r e e IDs are u n i f i e d
6 P E A R L m p i un i f y c a l l t r e e (∗ de f s) ;
7 / / P reprocess e v e n t t imes tamps
8 t r a c e−>p r e p r o c e s s () ;
9

10 / / Se t up c a l l b a c k s f o r e v e n t s
11 S ync h r on i z e r sync (rank) ;
12 Cal lbackManager fwdManager ;
13 fwdManager . r e g i s t e rc a l l b a c k (ANY, PEARL crea te ca l l back (&sync , &

S ync h r on i z e r : : a m or t i z e)) ;
14
15 / / Per form t he r e p l a y
16 PEARL forward rep lay (∗ t r a c e , fwdManager , NULL) ;

Figure 4.1 shows the program class diagram. TheControlledLogicalClock class encap-
sulates the Controlled Logical Clock. The member variablesdelta, mu, andgamma correspond
to δ, µ, andγ in Equations 3.3 and 3.4. Thevalue member variable is the current clock value.
The member functionsamortize forward intern andamortize forward recv corre-
spond to Equations 3.3 and 3.4, respectively. The definitions of these functions are shown in List-
ing 4.2. TheRingBuffer class provides an optimized, light-weight, templated ring-buffer class
to store remote timestamps for use during backwards amortization. Memory inRingBuffer is

11

Synchronizer
MAX_ERR:constdouble
myRank:int
prevEvtT:timestamp_t
firstEvtT:timestamp_t
recvBuff:RingBuffer<timestamp_t>
clc:ControlledLogicalClock+Synchronizer(r:int)+amortize(cbmanager:constCallbackManager&,user_event:int,event:constEvent&,cdata:CallbackData*)
lowercase(str:conststring&):string
isSend(event:constEvent&):bool
isRecv(event:constEvent&):bool
isOnRoot(event:constEvent&):bool
isNxN(event:constEvent&):bool
isNx1(event:constEvent&):bool
is1xN(event:constEvent&):bool
fwd_replay_send(sendEvt:constEvent&)
fwd_replay_recv(recvEvt:constEvent&):timestamp_t
bkwd_replay_send(sendEvt:constEvent&):timestamp_t
bkwd_replay_recv(recvEvt:constEvent&):timestamp_t
amortize_recv(event:constEvent&)
amortize_intern(event:constEvent&)
bkwd_amortize_recv(recvEvt:constEvent&,bk:timestamp_t)

TYPESIZE:uint32_tRingBuffer
buff:TYPE
h:uint32_t
count:uint32_t+RingBuffer(hd:uint32_t)+push(x:TYPE)+operator[](i:uint32_t):constTYPE&+size():uint32_t

ControlledLogicalClock#value:timestamp_t#delta:timestamp_t#mu:timestamp_t#gamma:double+ControlledLogicalClock()+amortize_forward_intern(curEvtT:consttimestamp_t,prevEvtT:consttimestamp_t):timestamp_t+amortize_forward_recv(curEvtT:consttimestamp_t,sendEvtT:consttimestamp_t,prevEvtT:consttimestamp_t):timestamp_t+get_value():timestamp_t+set_value(v:timestamp_t)+get_delta():timestamp_t+set_delta(d:timestamp_t)+get_mu():timestamp_t+set_mu(m:timestamp_t)+get_gamma():double+set_gamma(g:double)

+clc

+recvBuff

Figure 4.1: Program Class Diagram.

12 CHAPTER 4. IMPLEMENTATION

statically allocated, making this class both highly efficient and suitable for low-memory architec-
tures. (Although dynamic memory allocation would normallybe preferable in a restricted memory
environment, we take advantage of the fact that the buffer will be filled to capacity for the ma-
jority of the program’s execution time and so avoid the overhead of a dynamic data structure.)
TheSynchronizer class encapsulates the Extended Controlled Logical Clock.ThemyRank
member variable records the current process rank (i.e. location), which is identical to the pro-
cess rank of the application process which produced the local trace file. TheprevEventTime
andfirstEventTimemember variables corespond toLC ′

i(e
j−1

i) andLC ′

i(e
0
i), respectively, in

Equations 3.3 and 3.4. Theamortize member function is a callback function for use with the
PEARL replay mechanism, as shown in Listing 4.1. I discuss the other member functions in more
detail in Chapters 4.1 and 4.2.

Listing 4.2: C++ implementation of Equations 3.4 and 3.3

1 t i m e s t a m pt a m o r t i z e f o r w a r d i n t e r n (t i m e s t a m pt curEvtT ,
t i m e s t a m p t prevEvtT) {

2 va l ue = s t d : : max (va l ue + d e l t a , s t d : : max (va l ue + gamma∗ (
curEvtT − prevEvtT) , curEvtT)) ;

3 re tu rn va l ue ;
4 }
5
6 t i m e s t a m pt a m o r t i z e f o r w a r d r e c v (t i m e s t a m pt curEvtT ,

t i m e s t a m p t prevEvtT) {
7 t i m e s t a m pt i n t e r n T = a m o r t i z e f o r w a r d i n t e r n (curEvtT , prevEvtT

) ;
8 va l ue = s t d : : max (sendEvtT + mu, i n t e r n T) ;
9 re tu rn i n t e r n T ;

10 }

When performing backwards amortization, both anLCb
i which accounts only for local time axis di-

lation and anLC ′

i which also considers remote timestamps are required.amortize forward intern
andamortize forward recv setvalue to LC ′

i and returnLCb
i , but in the case of Equa-

tion 3.4,LCb
i = LC ′

i.

4.1 Forward Replay and Forward Amortization

Table 4.2: Timestamps exchanged during forward amortization.
Type of operation timestamp exchanged MPI function
1-to-1 timestamp of send event MPI Send
1-to-N timestamp of root enter event MPI Bcast
N-to-1 max(all enter event timestamps) MPI Reduce
N-to-N’ max(all enter event timestamps) MPI Allreduce

The first step in replaying a communication is the forward replay, which is performed byfwd replay send
andfwd replay recv. Here the process which was the sender in the original application sends
the timestamp of the send event to the process which was the receiver in the original application.
Communication proceeds in the same direction as it did in theoriginal application (i.e. forward).
This is all the communication required to compute forward amortization, since only local times-
tamps and at most one remote timestamp is required. Depending on the type of the original com-
munication operation, the timestamps are exchanged using different MPI function calls as listed in
Table 4.2.

4.2. BACKWARDS REPLAY AND BACKWARDS AMORTIZATION 13

Forward amortization is performed byamortize recv or amortize intern, depending on
if the event is a receive event or an internal event (recall that send events are considered inter-
nal events).amortize recv invokes backwards amortization if a clock condition violation is
detected after forward amortization has been performed.

4.2 Backwards Replay and Backwards Amortization

Table 4.3: Timestamps exchanged during backward amortization.
Type of operation timestamp exchanged MPI function
1-to-1 Implementationtimestamp of receive eventMPI Send
1-to-N min(all collective exit event timestamps) MPI Reduce
N-to-1 timestamp of root collective exit event MPI Bcast
N-to-N min(all collective exit event timestamps) MPI Allreduce

The second part of a communication replay is the backward replay, which is performed bybkwd replay send
andbkwd replay recv. Here the process which was the sender in the original application re-
ceives the timestamp of the receive event from the process which was the receiver in the original
application. The roles of sender and receiver are reversed in reference to the original application,
so the communication proceeds in a “backwards” direction. Depending on the type of the origi-
nal communication operation, the timestamps are exchangedusing different MPI function calls, as
listed in Table 4.3.

Figure 4.2: Datapoints Required During Backwards Amortization

Backwards amortization is performed bybkwd amortize recv. The datapoints required to
calculate backwards amortization are described in Figure 4.2. The backward amortization algorithm
is as follows:

1. Leten be an event preceding the event which caused the∆t timeline jump. (timestamp(en) =
bn)

2. Calculate the ideal linearly interpolated timestamp,cn, for en.

3. Let timestamp(en) := cn

4. If en is a send event andcn is greater than the receive event timestamp for this send event,
then a piecewise linear interpolation is calculated as follows:

(a) Letcn equal the receive event timestamp

(b) Let ēn be the event directly following eventen (i.e. en+1)

14 CHAPTER 4. IMPLEMENTATION

(c) Calculate the piecewise linearly interpolated timestamp, c̄n, for ēn

(d) Let timestamp(ēn) := c̄n

(e) Let ēn := ¯en + 1

(f) If timestamp(ēn) == ck, continue from Step 5. Otherwise, continue from Step 4a

5. Leten := en−1

6. If timestamp(en) == b0, END backwards amortization. Otherwise, continue from Step 1.

Equations 4.2 - 4.8 describe how the datapoints in Figure 4.2are calculated.

∆t = ck − bk ∆̄t = b̄0 − bn (4.1) (4.2)

LA = bk − b0 L̄A = bk − bn (4.3) (4.4)

bn = timestamp(en) b̄n =

∆t
LA

b0 + cn

∆t
LA+1

+ ∆̄t (4.5) (4.6)

cn =
∆t

LA
(bn − b0) + bn c̄n =

∆t − ∆̄t

L̄A

(b̄n − bn) + b̄n (4.7) (4.8)

Chapter 5

Acknowledgements

Daniel Becker of Forschungszentrum Jülich is the primary architect of the Extended Controlled
Logical Clock, which was first formulated in [1]. He oversaw my research in Jülich and was my
main interface to the researchers and resources there. Prof. Dr. Felix Wolf leads theSCALASCA

research and development group and provided me with every opportunity to improve my experience
in Jülich. Ágnes Vajda, Chris Medalis, and Vijay Renganathan were my CESRI contacts and excel-
lent hosts. This work would not have been possible without Herr Jamie Bishop of the Department
of Foreign Languages at Virginia Polytechnic Institute andState University.

15

16 CHAPTER 5. ACKNOWLEDGEMENTS

Chapter 6

Biography

John C. Linford is a PhD student of computer science at Virginia Tech. He received his Bachelor’s
of Computer Science and Mathematics in 2005 from Weber StateUniversity in Ogden, Utah. John
graduated from Weber State as the Crystal Crest Scholar of the Year, the school’s highest academic
honor, and was an adjunct professor of computer science before beginning his graduate studies at
Virginia Tech. Under Dr. Adrian Sandu, John is studying highperformance computing systems and
advanced multiphysics models, such as air quality and weather models. John is a member of the
Virginia Tech Triathlon Team and competed in the 2007 USA national triathlon championship. His
interests include cooking, playing piano, and art.

17

18 CHAPTER 6. BIOGRAPHY

Bibliography

[1] D. Becker, R. Rabenseifner, and F. Wolf. Timestamp synchronization for event traces of large-
scale message-passing applications. InProc. 14th European PVM/MPI Conference, Paris,
France, September 2007. Springer.

[2] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable parallel trace-based performance
analysis. InProc. 13th European PVM/MPI Conference, Bonn, Germany, September 2006.
Springer.

[3] Leslie Lamport. Time, clocks, and the ordering of eventsin a distributed system.Communica-
tions of the ACM, 21(7):558–565, July 1978.

[4] D. L. Mills. Network Time Protocol (Version 3). The Internet Engineering Task Force - Net-
work Working Group, March 1992. RFC 1305.

[5] R. Rabenseifner. The controlled logical clock - a globaltime for trace based software moni-
toring of parallel applications in workstation clusters. In Proc. 5th EUROMICRO Workshop on
Parallel and Distributed (PDP’97), pages 477–484, London, UK, January 1997.

[6] R. Rabenseifner. Die geregelte logische Uhr, eine globale Uhr für die tracebasierte
Überwachung paralleler Anwendungen. PhD thesis, Universität Stuttgart, March 2000.

19

